

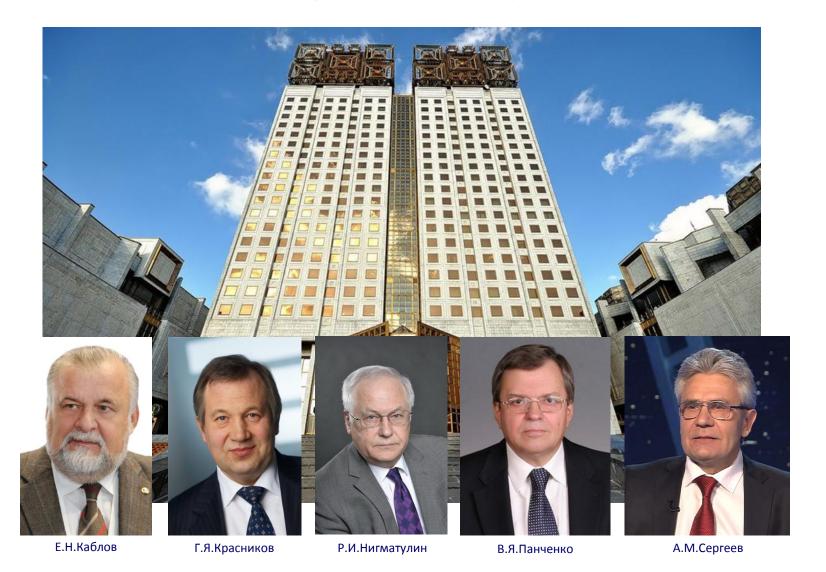
Supported by the Russian Foundation for Basic Research

Platinum Sponsor – Educational Partner: (intel

Platinum Sponsors:

Golden Sponsor:

Silver Sponsors:


In Cooperation with:

Conference Operator: Top Level

Russian Academy of Sciences: President Elections (September, 25th-29th)

Russian Supercomputing Days

World Supercomputing News (IDC-Projected Exascale Systems Details)

U.S.

- Sustained ES: 2023
- Peak ES: 2021
- Vendors: U.S.
- Processors: U.S.
- Initiatives: NSCI/ECPCost: \$300-500M per system,

EU

- Sustained ES: 2023-24
- Peak ES: 2021
- Vendors: U.S., Europe
- Processors: U.S., ARM
- Initiatives: PRACE, ETP4HPC
- Cost: \$300-\$350 per system, plus heavy R&D investments

China

plus heavy R&D investments

- Sustained ES: 2023
- Peak ES: 2020
- Vendors: Chinese
- Processors: Chinese (plus U.S.?)
- 13th 5-Year Plan
- Cost: \$350-500M per system, plus heavy R&D

Japan

- Sustained ES: 2023-24
- Peak ES: Not planned
- Vendors: Japanese
- Processors: Japanese
- Cost: \$600-850M, this includes both 1 system and the R&D costs...will also do many smaller size systems

"Hyperion (IDC) Paints a Bullish Picture of HPC Future", © Hyperion, 2017

World Supercomputing News (IDC-Projected Exascale Investment Levels)

U.S.

- \$1 to \$2 billion a year in R&D (including NRE)
- Investments by both governments & vendors
- Plans are to purchase multiple exascale systems

EU

- About 5 billion euros in total
- Investments in multiple exascale and pre-exascale systems
- Investments mostly by country governments with a little from the EU

China

- Over \$1billion a year in R&D
- Investments by both governments & vendors
- Plans are to purchases multiple exascale systems each year
- Already investing in 3 preexascale systems by 2017/18

Japan

- Planned investment of just over \$1billion* (over 5 years) for both the R&D and purchase of 1 exascale system
- To be followed by a number of smaller systems ~\$100M to \$150M each
- Creating a new processor and a new software environment

"Hyperion (IDC) Paints a Bullish Picture of HPC Future", © Hyperion, 2017

World Supercomputing News

China Upgrading Milky Way 2 Supercomputer to 95 Petaflops

September 19, 2017 by <u>Rich Brueckner</u> <u>Leave a Comment</u>

We have some breaking news from the IHPC Forum in Guangzhou today. Researchers in China are busy upgrading the MilkyWay 2 (Tianhe-2) system to nearly 95 Petaflops (peak). This should nearly double the performance of the system, which is currently ranked at #2 on TOP500 with 33.86 Petaflops on the Linpack benchmark. The upgraded system, dubbed Tianhe -2A, should be completed in the coming months.

Components	TianHe-2	TianHe-2A
Nodes and performance	16,000 nodes with	17,792 nodes with
	Intel CPUs + KNC	Intel CPUs + Matrix-2000
	54.9 Pflop/s	94.97 Pflop/s
Interconnection	10 Gbps, 1.57 us	14 Gbps, 1 us
Memory	1.4 PB	3.4 PB
Storage	12.4 PB, 512 GB/s	19 PB, 1 TB/s
		(upgrading, maybe larger)
Energy efficiency	17.8 MW, 1.9 Gflop/s per Watt	16.9MW, >5 Gflop/s per Watt (predicted)
Heterogeneous software	MPSS for Intel KNC	OpenMP/OpenCL for Matrix-2000

Commission on Supercomputing Technologies (Ministry of Telecom and Mass Communications)

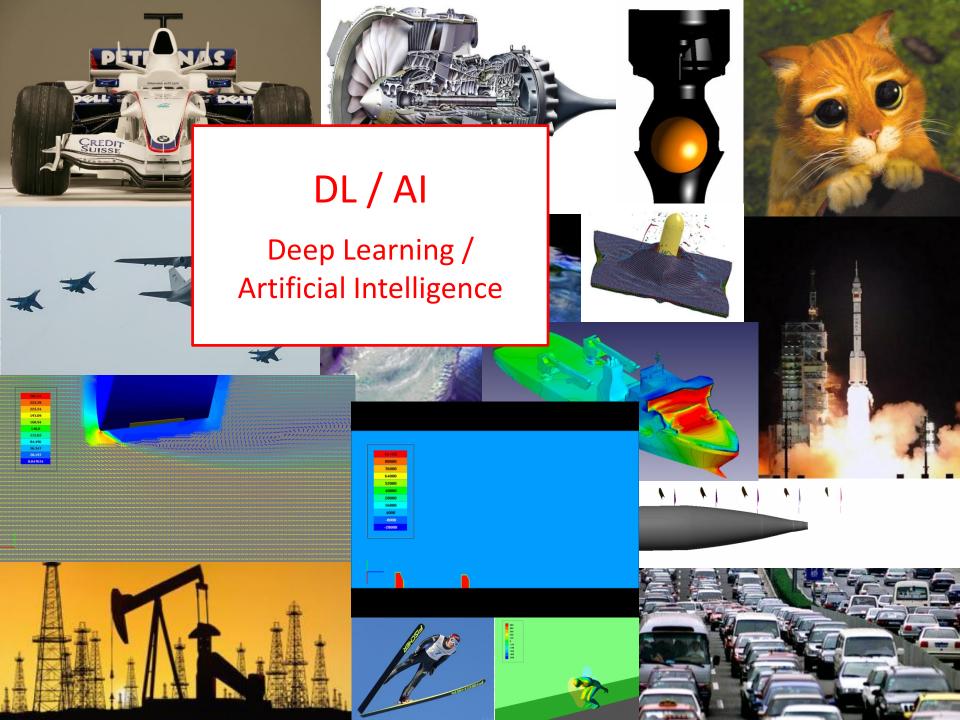
В Минкомсвязи России обсудили перспективы развития суперкомпьютерных и распределенных вычислений

Москва, 24 августа 2017 года. — В Министерстве связи и массовых коммуникаций Российской Федерации состоялось первое заседание Межведомственной комиссии по суперкомпьютерным и грид-технологиям при президиуме Совета при Президенте Российской Федерации по модернизации экономики и инновационному развитию. Представители министерств и ведомств обсудили перспективы развития соответствующей отрасли в России, ее актуальные проблемы и пути их решения. Мероприятие прошло под председательством главы Минкомсвязи России Николая Никифорова.

Top50 of the most powerful Russian supercomputers (top50.supercomputers.ru)

NVIDIA DGX-1 B Top50:

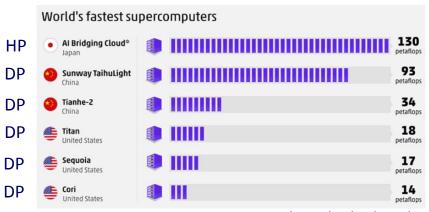
31	Москва <u>ЛНСиГО МФТИ</u> 2017 г.	4/976	узлов: 2 (2xXeon E5-2698v4 [Acc: 8xTesla P100] 2.2 GHz 512 GB RAM) сеть: Infiniband EDR/10 Gigabit Ethernet Copper/Fast Ethernet	56.58	87.68	NVIDIA
32	Москва Сколковский Институт Науки и Технологий 2017 г.	4/976	узлов: 2 (2xXeon E5-2698v4 [Acc: 8xTesla P100] 2.2 GHz 512 GB RAM) сеть: Infiniband EDR/10 Gigabit Ethernet Optical/Fast Ethernet	56.58	87.68	NVIDIA



The most Green Supercomputing Platforms (June 2017)

on 14C 2.4GHz	Intel Omni-Path		Rmax/ Power
	Intel Omni-Path		rower I
on 14C 1 7GHz		Tesla P100 SXM2	14.11
	Infiniband FDR	Tesla P100	14.05
on 10C 1.8GHz	Infiniband EDR	Tesla P100 SXM2	12.68
on 20C 2.2GHz	Infiniband EDR	Tesla P100	10.60
on 12C 2.2GHz	Infiniband EDR	Tesla P100	10.43
on 12C 2.6GHz	Aries interconnect	Tesla P100	10.40*
on 16C 1.3GHz	Infiniband EDR	PEZY-SC2	10.22**
on 12C 2.2GHz	Infiniband EDR	Tesla P100	9.80
on 20C 2.2GHz	Infiniband EDR	Tesla P100/Quadro GP100	9.46
	on 20C 2.2GHz on 12C 2.2GHz on 12C 2.6GHz on 16C 1.3GHz on 12C 2.2GHz	on 20C 2.2GHz Infiniband EDR	on 20C 2.2GHz Infiniband EDR Tesla P100 SXM2 on 12C 2.2GHz Infiniband EDR Tesla P100 on 12C 2.6GHz Aries interconnect Tesla P100 on 16C 1.3GHz Infiniband EDR PEZY-SC2 on 12C 2.2GHz Infiniband EDR Tesla P100 Tesla on 20C 2.2GHz Infiniband EDR P100/Quadro

[Gflops/Watt]


World Supercomputing News, Trends, Perspectives (Deep Learning / Artificial Intelligence deluge...)

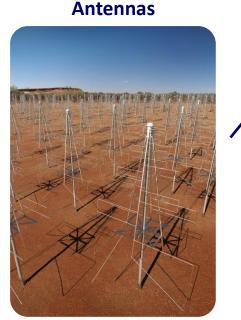
DL: from prediction to active control!

DL/AI: from double and single precision to half-precision (16 bits: exponent (5 bits), fraction (10 bits), sign (1 bit)): AI-precision, AI-flops, AI-Eflops (130 Pflops in Japan...).

AI: the notion should be used carefully, imitation Intelligence...
Intelligence achieved through artificial means!

AI/DL haven't shown exascale computing demand as some scientific projects do.

World Supercomputing News, Trends, Perspectives (huge diversity of computer devices)


Square Kilometre Array: A Leading Big Data Challenge for 2020

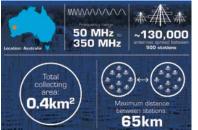
Digital Signal Processing (DSP)

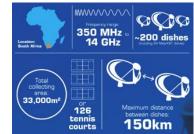
Imaging – HPC problem

2020: 100 PBytes/day 2028: 10,000 PBytes/day

Over 10's to 1000's kms

Transfer antennas to DSP 2020: 20,000 PBytes/day 2028: 200,000 PBytes/day


Over 10's to 1000's kms

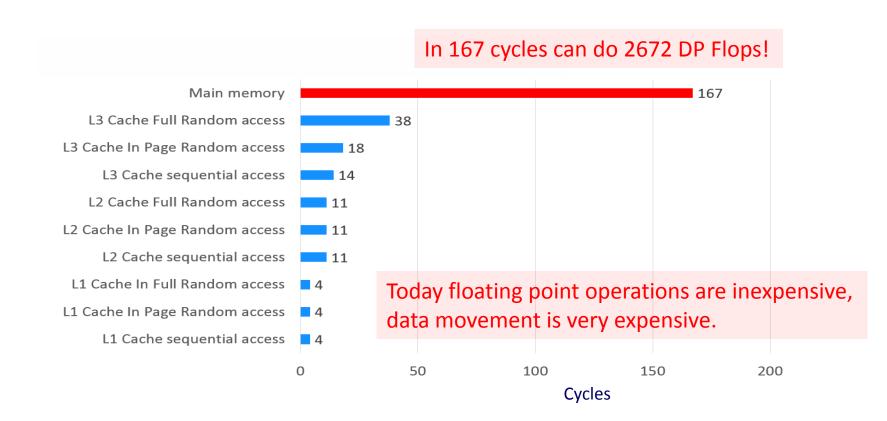


HPC Processing

2020: 300 Pflop/s 2028: 30 Eflop/s

World Supercomputing News, Trends, Perspectives (complexity of computer devices)

```
Floating point operations per cycle per core
     Most of the recent computers have FMA (Fused multiple add): (i.e.
          x \leftarrow x + y^*z in one cycle)
     Intel Xeon earlier models and AMD Opteron have SSE2
          2 flops/cycle DP & 4 flops/cycle SP
     Intel Xeon Nehalem ('09) & Westmere ('10) have SSE4
          4 flops/cycle DP & 8 flops/cycle SP
     Intel Xeon Sandy Bridge ('11) & Ivy Bridge ('12) have AVX
          8 flops/cycle DP & 16 flops/cycle SP
     Intel Xeon Haswell ('13) & (Broadwell ('14)) AVX2
          16 flops/cycle DP & 32 flops/cycle SP
     Intel Xeon Skylake (server) AVX 512
          32 flops/cycle DP & 64 flops/cycle SP
```



We

are

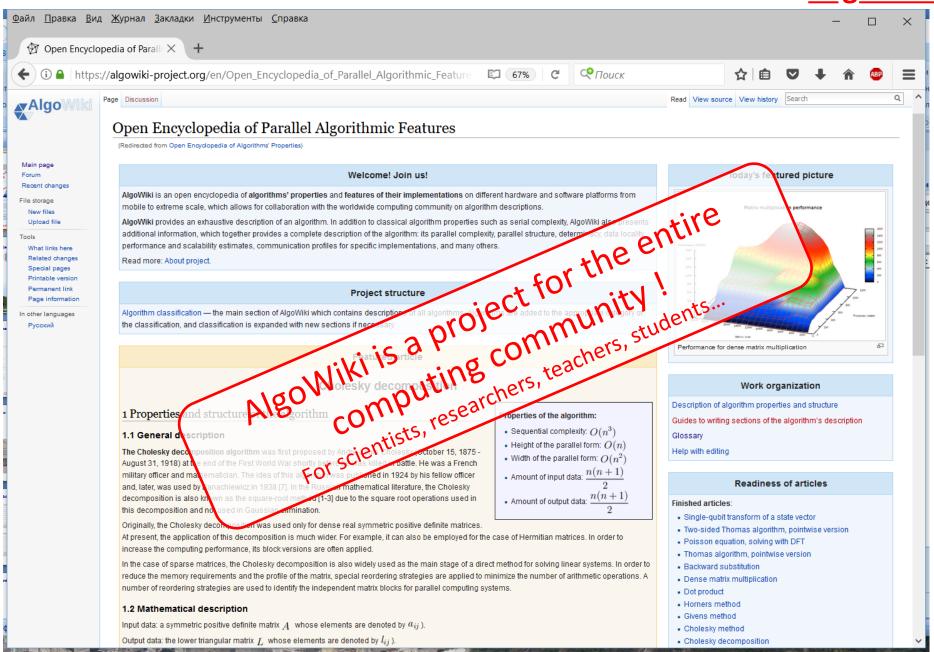
here

Knight's Landing

World Supercomputing News, Trends, Perspectives (CPU access latencies)

Yutaka Ishikawa about Post-K supercomputer:

"Easy of use is one of our Key Performance Indicators".



World Supercomputing News, Trends, Perspectives

(huge diversity of computer devices)

<u>AlgoWiki</u>

Distributed Summer Supercomputing Academy

June, 23rd – July, 1st, 2017

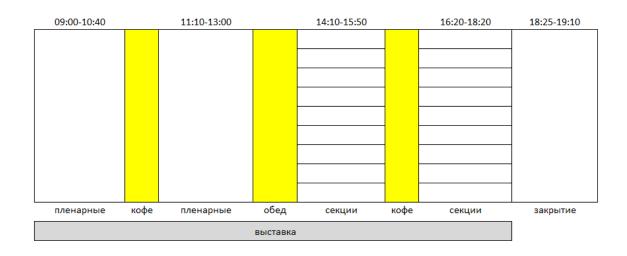
Educational tracks:

- MPI / OpenMP programming technologies
- NVIDIA GPU programming technologies
- Design and deployment of supercomputer solutions
- Quantum Informatics
- OpenFOAM/Salome/Paraview open software
- Computational hydrodynamics on supercomputers

Distributed Summer Supercomputing Academy (http://Academy.HPC-Russia.ru)

Russian Supercomputing Days

"Supercomputing Education" Series: New Books



Russian Supercomputing Days: General Schedule

September, 25th Monday

September, 26th Tuesday

Russian Supercomputing Days: Awards

- Best Research Paper,
- Best Research Paper Industrial Session,
- Best Research Paper Young Scientists Session,
- Best Research Poster.

Winners will be announced at the Closing Session: September, 26th, 18:25

