GPU Acceleration of Dense Matrix And Block Operations for Lanczos Method for Systems over Large Prime Finite Field

D. Zheltkov, N. Zamarashkin

INM RAS

September 25, 2017

Consider $N \times N$ sparse system with average ρ nonzero elements per row over finite field with prime number consisting of Wmachine words. Such system could be solved using block Lanczos method with block size k on p = ks computer nodes.

The method constist of 3 types of operations:

- Sparse matrix by block multiplication. Time $O(\frac{\rho W N^2}{ks})$.
- Dense operations. Time $O(\frac{W^2N^2}{s} + \frac{W^2kN}{s})$.
- Communication. Time $O(\frac{WN^2}{k} + \frac{WN^2}{ks} + WNk)$.

While dense operations are fast enough method scales *almost perfectly*.

Consider $N \times N$ sparse system with average ρ nonzero elements per row over finite field with prime number consisting of Wmachine words. Such system could be solved using block Lanczos method with block size k on p = ks computer nodes.

The method constist of 3 types of operations:

- Sparse matrix by block multiplication. Time $O(\frac{\rho W N^2}{ks})$.
- Dense operations. Time $O(\frac{W^2N^2}{s} + \frac{W^2kN}{s})$.

• Communication. Time — $O(\frac{WN^2}{k} + \frac{WN^2}{ks} + WNk)$.

While dense operations are fast enough method scales *almost perfectly*.

CPU are not very effective on operations over large field in comparizon with floating point operations:

- ► No instruction for fused multiply-add with carry.
- No appropriate vector instructions.

Rate of needed elementary integer operations is at least **32 times lower** than for single precision floating point operations.

CPU are not very effective on operations over large field in comparizon with floating point operations:

- ► No instruction for fused multiply-add with carry.
- No appropriate vector instructions.

Rate of needed elementary integer operations is at least **32 times lower** than for single precision floating point operations.

GPU advantages and problems

Advantage:

▶ Instruction for fused multiply-add with carry (*madc*).

Disadvantages:

- Only 32-bit version of *madc* operation (so, 4 time more elemental operations is needed for large number multiplication).
- Several (2 to 6) clocks are needed to perform *madc* operation.
- Limited register resource.

Overall, even with the same floating point performance GPU must be **several times faster** than CPU on dense operations over large field.

GPU advantages and problems

Advantage:

▶ Instruction for fused multiply-add with carry (*madc*).

Disadvantages:

- Only 32-bit version of *madc* operation (so, 4 time more elemental operations is needed for large number multiplication).
- Several (2 to 6) clocks are needed to perform *madc* operation.
- Limited register resource.

Overall, even with the same floating point performance GPU must be **several times faster** than CPU on dense operations over large field.

GPU architecture

GPU consist of several computational devices name *streaming multiprocessor* (*SM*).

Each *SM* have access to *global* GPU memory and small amount of local memory.

Each *SM* consist of 32 - 128 very simple *streaming processors* (*SP*).

SPs are united in groups of 32 performing the same operation — warps.

Programming *blocks* consisting of *threads* are loaded to *SM*. Total number of *blocks* loaded to *SM* depends of resources used by *block*.

Total number of threads on *SM* could be significally larger than number of *block*.

Blocks are dynamically scheduled to compensate instruction and data load.

Total number of threads loaded to SM is limited by several limitations:

- ► Total number of threads.
- Number of blocks,
- Amount of used *shared* memory.
- Number of used *registers*.

Calculation in one block

Data load in naive algorithm

Data handle

Data load in Winograd algorithm

Winograd computation

Winograd method for LU decomposition

Two steps of elimination:

$$A \to A - \left[\begin{array}{c} L_{11} \\ A_{21}U_{11}^{-1} \end{array} \right] \left[\begin{array}{c} U_{11} & L_{11}^{-1}A_{12} \end{array} \right] = A - \left[\begin{array}{c} L_{11} \\ \hat{A}_{21} \end{array} \right] \left[\begin{array}{c} U_{11} & \hat{A}_{12} \end{array} \right],$$

Consider matrix product:

$$C = \left[\begin{array}{cc} A_1 & A_2 \end{array} \right] \left[\begin{array}{c} B_1 \\ B_2 \end{array} \right],$$

So

$$C_{j}^{i} = (a_{i1} + b_{j2})(a_{i2} + b_{j1}) - a_{i1}a_{i2} - b_{j1}b_{j2},$$

512-bit prime

Device	C2070	K40	GTX1050
$2^{21} \times 8$	0.35	0.28	0.41
$2^{21} imes 16$	1.31	0.89	1.56
1024×1024	2.38	1.57	2.53

Table: Naive algorithm time (sec.)

Table: Winograd algorithm time (sec.)

Device	C2070	K40	GTX1050	i5-4440
$2^{21} \times 8$	0.26	0.19	0.28	3.98
$2^{21} imes 16$	0.89	0.6	0.95	13.41
1024 imes 1024	1.48	0.91	1.42	20.92

Numerical results

768-bit prime

Device	C2070	K40	GTX1050
$2^{21} \times 8$	0.85	0.58	1.15
$2^{21} imes 16$	3.1	2	3.88
1024 imes 1024	5.75	3.67	6.49

Table: Naive algorithm time (sec.)

Table: Winograd algorithm time (sec.)

Device	C2070	K40	GTX1050	i5-4440
$2^{21} \times 8$	0.8	0.63	1	7.24
$2^{21} imes 16$	2.86	2.07	3.5	24.28
1024 imes 1024	5.38	3.31	5.52	39.23

1024-bit prime

Device	C2070	K40	GTX1050
$2^{21} \times 8$	2.04	1.06	2.83
$2^{21} imes 16$	7.59	3.91	10.82
1024×1024	13.55	7.16	18.11

Table: Naive algorithm time (sec.)

Table: Winograd algorithm time (sec.)

Device	C2070	K40	GTX1050	i5-4440
$2^{21} \times 8$	1.53	1.07	2.12	12.6
$2^{21} imes 16$	5.47	3.57	6.8	54.97
1024 imes 1024	9.37	5.77	9.74	69