
GPU Acceleration of Dense Matrix And
Block Operations for Lanczos Method for

Systems over Large Prime Finite Field

D. Zheltkov, N. Zamarashkin

INM RAS

September 25, 2017



Scalability of Lanczos method

Consider N × N sparse system with average ρ nonzero elements
per row over finite field with prime number consisting of W
machine words. Such system could be solved using block Lanczos

method with block size k on p = ks computer nodes.

The method constist of 3 types of operations:
I Sparse matrix by block multiplication. Time — O(ρWN2

ks ).
I Dense operations. Time — O(W 2N2

s + W 2kN
s ).

I Communication. Time — O(WN2

k + WN2

ks + WNk).
While dense operations are fast enough method scales almost
perfectly.



Scalability of Lanczos method

Consider N × N sparse system with average ρ nonzero elements
per row over finite field with prime number consisting of W
machine words. Such system could be solved using block Lanczos

method with block size k on p = ks computer nodes.

The method constist of 3 types of operations:
I Sparse matrix by block multiplication. Time — O(ρWN2

ks ).
I Dense operations. Time — O(W 2N2

s + W 2kN
s ).

I Communication. Time — O(WN2

k + WN2

ks + WNk).
While dense operations are fast enough method scales almost
perfectly.



CPU problems

CPU are not very effective on operations over large field in
comparizon with floating point operations:

I No instruction for fused multiply-add with carry.
I No appropriate vector instructions.

Rate of needed elementary integer operations is at least 32 times
lower than for single precision floating point operations.



CPU problems

CPU are not very effective on operations over large field in
comparizon with floating point operations:

I No instruction for fused multiply-add with carry.
I No appropriate vector instructions.

Rate of needed elementary integer operations is at least 32 times
lower than for single precision floating point operations.



GPU advantages and problems

Advantage:
I Instruction for fused multiply-add with carry (madc).

Disadvantages:
I Only 32-bit version of madc operation (so, 4 time more

elemental operations is needed for large number
multiplication).

I Several (2 to 6) clocks are needed to perform madc operation.
I Limited register resource.

Overall, even with the same floating point performance GPU must
be several times faster than CPU on dense operations over large
field.



GPU advantages and problems

Advantage:
I Instruction for fused multiply-add with carry (madc).

Disadvantages:
I Only 32-bit version of madc operation (so, 4 time more

elemental operations is needed for large number
multiplication).

I Several (2 to 6) clocks are needed to perform madc operation.
I Limited register resource.

Overall, even with the same floating point performance GPU must
be several times faster than CPU on dense operations over large
field.



GPU architecture

GPU consist of several computational devices name streaming
multiprocessor (SM).
Each SM have access to global GPU memory and small amount of
local memory.
Each SM consist of 32− 128 very simple streaming processors
(SP).
SPs are united in groups of 32 performing the same operation —
warps.

Programming blocks consisting of threads are loaded to SM.
Total number of blocks loaded to SM depends of resources used
by block.
Total number of threads on SM could be significally larger than
number of block.
Blocks are dynamically scheduled to compensate instruction and
data load.



GPU resource limitation

Total number of threads loaded to SM is limited by several
limitations:

I Total number of threads.
I Number of blocks,
I Amount of used shared memory.
I Number of used registers.



Computational scheme of matrix multiplication
Calculation in one block



Computational scheme of matrix multiplication
Data load in naive algorithm



Computational scheme of matrix multiplication
Data handle



Computational scheme of matrix multiplication
Data load in Winograd algorithm



Computational scheme of matrix multiplication
Winograd computation



Winograd method for LU decomposition

Two steps of elimination:

A→ A−
[

L11
A21U−1

11

] [
U11 L−1

11 A12
]

= A−
[

L11
Â21

] [
U11 Â12

]
,

Consider matrix product:

C =
[

A1 A2
] [

B1
B2

]
,

So
C i

j = (ai1 + bj2) (ai2 + bj1)− ai1ai2 − bj1bj2,



Numerical results
512-bit prime

Table: Naive algorithm time (sec.)

Device C2070 K40 GTX1050
221 × 8 0.35 0.28 0.41
221 × 16 1.31 0.89 1.56

1024× 1024 2.38 1.57 2.53

Table: Winograd algorithm time (sec.)

Device C2070 K40 GTX1050 i5-4440
221 × 8 0.26 0.19 0.28 3.98
221 × 16 0.89 0.6 0.95 13.41

1024× 1024 1.48 0.91 1.42 20.92



Numerical results
768-bit prime

Table: Naive algorithm time (sec.)

Device C2070 K40 GTX1050
221 × 8 0.85 0.58 1.15
221 × 16 3.1 2 3.88

1024× 1024 5.75 3.67 6.49

Table: Winograd algorithm time (sec.)

Device C2070 K40 GTX1050 i5-4440
221 × 8 0.8 0.63 1 7.24
221 × 16 2.86 2.07 3.5 24.28

1024× 1024 5.38 3.31 5.52 39.23



Numerical results
1024-bit prime

Table: Naive algorithm time (sec.)

Device C2070 K40 GTX1050
221 × 8 2.04 1.06 2.83
221 × 16 7.59 3.91 10.82

1024× 1024 13.55 7.16 18.11

Table: Winograd algorithm time (sec.)

Device C2070 K40 GTX1050 i5-4440
221 × 8 1.53 1.07 2.12 12.6
221 × 16 5.47 3.57 6.8 54.97

1024× 1024 9.37 5.77 9.74 69


