Ani3D-extension of parallel platform INMOST and hydrodynamic applications

Vasily Kramarenko¹ Igor Konshin^{1,3} Yuri Vassilevski^{1,2}

¹Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia

²Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia

³Dorodnicyn Computing Centre, FRC CSC RAS, Moscow, Russia

RuSCDays-2017, Moscow, 25 September, 2017

- Motivation
- Ani3D software package
- INMOST software platform
- Ani3D–INMOST integration
- Model hydrodynamic problems

- There are advanced serial FEM codes (e.g. Ani3D)
- Increasing the size of the problems to be solved
- Time and memory limitations for a serial computer
- Parallel mesh generation, discretization, linear system solution are required
- The direct code parallelization is too difficult
- There are software packages to operate with the distributed mesh data

Ani3D

-	👼 🖉 Advanced Numerici X									
÷	← → C ① ⓐ Secure https://sourceforge.net/projects/ani3d/									
	sourcefo	orge	Search	Brows	e Enterprise	Blog	Articles	Deals	Help	
	SOLUTION CENTERS	Resources	Newsletters	Cloud Storage Providers	Business VolP	Providers	Call Cen	ter Provid	ers	
Hor	Home / Browse / Development / Software Development / Advanced Numerical Instruments 3D									

Advanced Numerical Instruments 3D Advanced numerical instruments: adaptive meshing, FE methods, solvers

Brought to you by: lipnikov, vasilevs

tensorial coefficients: (1) unstructured adaptive mesh generation, (2) metric-based mesh adaptation, (3) finite element discretization and interpolation, (4) algebraic solvers.

V. Kramarenko et al.

- Generation of tetrahedral meshes
- Mesh adaptation
- FEM discretization on tetrahedral meshes
- Solution of linear and nonlinear systems
- Serial code in Fortran and C

Open source code:

http://sourceforge.net/projects/ani3d

Ani-MBA library

- generation of quasi-uniform meshes in a user-defined metric
- uniform refinement of tetrahedral meshes

Ani-FEM library

- local finite element discretization on tetrahedron
- assembling the local discretizations into a global linear system

the rest of libraries...

- Ani-C2F, Ani-INB, Ani-LMR, Ani-PRJ, Ani-RCB
- Ani-ILU, Ani-LU

M INMOST v0.1 - igor.konshi × 💽 Home · INMOST-DEV/IN × 🚷 hpc oilgas -	Поиск в Goo × Суперкомпью	терные технол 🛛 📭 Скорост	ь интернет соед × +	_ 0 _ X			
		V C Soogle	P 🖡 🏫 🤉	☆ 自 ☰			
GitHub This repository Search	Explore Features	Enterprise Blog	Sign up Sign in	Î			
INMOST-DEV / INMOST		Watch 2	★ Star 0 ¥ Fork 0				
Home Kirill Terekhov edited this page 4 days ago · 12 revisions			0	II			
Welcome to the INMOST	Welcome to the INMOST wiki!						
Compiling INMOST:		Find a Page					
Compilation guides		0100 Compilatio	n N Windows				
Reporting issues and preparing tests:		0201 Obtain MS	/C [_i]i				
Guide for testing		0202 Obtain MSI	MPI				
Evolore included examples:	0203 Compilation INMOST Windows						
List of Examples	n ParMETIS						
Please read before writing Wiki articles:	Please read before writing Wiki articles: Windows						
		0206 Compilatio	n PFTSc				

M INMOST v0.1 - igor.konshi × INM	OST: Class List ×	8 hpc oilgas - Поиск в Goo 🛛 🛛	Суперкомпьютерные технол	К Скорость интернет соед	× +		0	×
	v/html/annotated.html		∀ ℃	▼ Google	۹ 🕴	A	☆ 🖻	≡
INMOST A toolkit for distributed mathemat	tical modeling							^
Main Page Related Pages	Blasses Files				Q.	Search		
Class List Class Index Class Hier	archy Class Members							
Class List								
Here are the classes, structs, unions ar	nd interfaces with brief desc	criptions:						
						(det	ail level 1	2 3 4]
▼ Automatizator								
G table								
C expr								
C TagMemory								
G Tag								
TagManager								
sparse_sub_record								
Storage	Base class for Mesh, Ele	ment, and ElementSet classes						
reference_array	Storage type for represen	nting arrays of Element reference:	8					
Const_iterator								
Const_reverse_iterator								
G iterator								

INMOST

- Integrated
- Numerical
- Modelling and
- Object-oriented
- Supercomputing
- Technologies

INMOST is the software platform for developing parallel numerical models on general meshes.

INMOST is a tool for supercomputer simulations characterized by a maximum generality of supported computational meshes, distributed data structure flexibility, cost-effectiveness, cross platform portability.

- Mesh data are distributed
- Conformal meshes with Tetrahedra, Hexahedra, Prisms, Pyramids, Polyhedra etc.
- Mesh elements hierarchy: Vertex, Edge, Face, Cell
- Mesh element can contain some data (tags)
- Specification of "ghost" elements ("hallo")
- Exchange tag data for ghost elements
- Save/Load mesh data in a parallel format file (.pmf, .pvtk, ...)

- Assemble the distributed matrix and right-hand side of the linear system
- Parallel solution of the distributed linear system
- A set of internal linear solvers
- A set of external solvers: PETSc, Trilinos, SuperLU, ...

Parallelization Technology

Mesh

- read and partition
- refine on each processor preserving conformity
- merge

Init

- enumerate respective elements
- create tags for DOFs numbers
- synchronize tags

Assemble

- generate local matrix for each tetrahedron
- assemble them into a global matrix

Formulation

$$\begin{aligned} -\Delta \boldsymbol{u} + \nabla p &= 0 & \text{in } \Omega \\ \nabla \cdot \boldsymbol{u} &= 0 & \text{in } \Omega \\ \boldsymbol{u} &= \boldsymbol{u}_0 & \text{on } \partial \Omega_1 \\ \boldsymbol{u} &= 0 & \text{on } \partial \Omega_2 \\ \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{n}} - p &= 0 & \text{on } \partial \Omega_3 \\ \boldsymbol{u}_0 &= (64 \cdot (y - 0.5) \cdot (1 - y) \cdot z \cdot (1 - z), 0, 0) \end{aligned}$$

Figure: The coarsest mesh S0

Table: The problems parameters

Problem name	S0	S1	S2
Number of nodes	5187	36824	279903
Number of edges	31637	243079	1908542
Number of tetrahedra	25113	200904	1607232
Matrix size	115659	876533	6845238
Number of nonzeros	10751851	84374191	668849086

Results for S0 and S1 problem

p	$T_{\rm ini}$	$T_{\rm ass}$	$T_{\rm prec}$	$T_{\rm iter}$	$N_{\rm iter}$	Dens	РМ	$T_{\rm sol}$	S
1	0.06	8.77	3.30	4.26	102	0.81	0	7.56	1.00
2	0.04	5.72	2.27	3.27	132	0.96	0	5.54	1.36
4	0.03	3.95	1.57	2.34	152	1.18	0	3.91	1.93
8	0.02	2.25	1.19	1.81	172	1.53	5	3.00	2.52
16	0.02	1.63	1.20	1.40	182	2.01	3	2.83	2.67
32	0.02	1.49	1.50	1.33	182	2.80	10	2.83	2.67

Table: The solution of S0 problem on p = 1, ..., 32 processors

Table: The solution of S1 problem on p = 1, ..., 32 processors

p	$T_{\rm ini}$	$T_{\rm ass}$	$T_{\rm prec}$	$T_{\rm iter}$	$N_{\rm iter}$	Dens	РМ	$T_{\rm sol}$	S
1	0.38	69.07	31.41	97.20	242	0.85	0	128.61	1.00
2	0.28	40.97	20.30	76.88	322	0.93	0	97.18	1.32
4	0.21	25.31	12.76	47.88	332	1.03	0	60.64	2.12
8	0.14	13.76	7.83	28.68	332	1.15	1	36.51	3.52
16	0.10	8.37	4.77	18.46	362	1.37	3	23.23	5.53
32	0.06	5.09	4.12	12.70	402	1.65	8	16.82	7.64

Table: The solution of S2 problem on p = 4, ..., 32 processors

p	$T_{\rm ini}$	$T_{\rm ass}$	$T_{\rm prec}$	T_{iter}	$N_{\rm iter}$	Dens	РМ	$T_{\rm sol}$	S
4	1.48	181.05	142.29	1484.02	722	0.97	0	1626.31	1.00
8	0.90	94.03	76.01	847.62	802	1.03	0	923.63	1.76
16	0.58	52.03	72.70	481.50	802	1.10	2	554.20	2.93
32	0.37	29.23	26.88	288.73	802	1.21	2	315.61	5.15

Unsteady convection-diffusion problem

Formulation

$$\frac{\partial c}{\partial t} - \nabla (D\nabla c) + \mathbf{v} \cdot \nabla c = 0 \quad \text{in } \Omega$$

$$c = g \quad \text{on } \partial \Omega$$

$$D = \begin{pmatrix} 0.001 & 0 & 0 \\ 0 & 0.001 & 0 \\ 0 & 0 & 0.001 \end{pmatrix}$$

$$\mathbf{v} = (1, 0, 0)$$

Unsteady convection-diffusion problem

Figure: The concentration at time t = 0.5

Table: The problems parameters

Problem name	LO	L1	L2
Number of nodes	20417	155905	1218561
Number of tetrahedra	111616	892928	7143424
Matrix size	20417	155905	1218561
Number of nonzeros	291393	2281217	18053121

Table:	The so	lution c	f problem	on mesh	L0 on	p =	1,, 32	processors
--------	--------	----------	-----------	---------	-------	-----	--------	------------

p	$T_{\rm ini}$	$T_{\rm ass}$	$T_{\rm sol}$	T_{Σ}	S
1	2.87	62.68	3.27	68.82	1.00
2	1.93	40.45	2.05	44.43	1.54
4	1.29	26.94	1.24	29.47	2.33
8	0.82	16.76	0.76	18.34	3.75
16	0.58	11.91	0.53	13.02	5.28
32	0.45	8,89	0.55	9.89	6.95

Table: The solution of problem on mesh L1 on p = 1, ..., 32 processors

p	$T_{\rm ini}$	$T_{\rm ass}$	$T_{\rm sol}$	T_{Σ}	S
1	26.16	552.87	33.86	612.89	1.00
2	16.48	327.93	21.31	365.72	1.67
4	9.83	197.89	12.19	219.91	2.78
8	5.75	114.81	7.28	127.84	4.79
16	3.56	73.57	4.03	81.16	7.55
32	2.31	47.28	2.45	52.04	11.77

Table: The solution of problem on mesh L2 on p = 1, ..., 32 processors

p	$T_{\rm ini}$	$T_{\rm ass}$	$T_{\rm sol}$	T_{Σ}	S
1	436.82	5692.31	723.23	6852.36	1.00
2	169.17	2628.09	258.71	3055.97	2.24
4	94.33	1461.24	147.30	1702.87	4.02
8	53.62	874.21	91.24	1019.07	6.72
16	31.52	522.99	53.28	607.79	11.27
32	17.6	308.84	29.61	356.05	19.24

- The Ani3D-extension of the parallel platform INMOST is presented.
- The extension widens the functionality of INMOST by the FE and meshing libraries of the Ani3D software package.
- Numerical experiments demonstrated the efficiency of the presented approach for the parallel solution of two model hydrodynamic problems.
- The examples can be downloaded at

https://github.com/INMOST-DEV/INMOST/tree/master/Examples/Ani_Inmost