
A Service-Oriented Infrastructure for Teaching
Big Data Technologies

Oleg Sukhoroslov �

1 Institute for Information Transmission Problems
of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia

2 Yandex School of Data Analysis, Moscow, Russia
3 Higher School of Economics, Moscow, Russia

sukhoroslov@iitp.ru

Abstract. The paper presents an experience in incorporating Big Data
technologies into introductory parallel and distributed computing courses
and building a service-oriented infrastructure to support practical ex-
ercises involving these technologies. The presented approach helped to
provide a smooth practical experience for students with different techni-
cal background by enabling them to run and test their MapReduce and
Spark programs on a provided Hadoop cluster via convenient web inter-
faces. This approach also enabled automation of routine actions related
to submission of programs to a cluster and evaluation of programming
assignments.

Keywords: Big data · Parallel programming · Distributed computing ·
Hadoop · MapReduce · Spark · Web-based interfaces · Web services

1 Introduction

The explosive growth of data observed in a variety of areas from research to
commerce, commonly referred to as the Big Data phenomenon, requires the use
of high-performance resources and efficient means for storing and processing
large amounts of data. During the last decade, the distributed data processing
models such as MapReduce [1] and technologies like Hadoop [2] and Spark [3] are
emerged. Modern HPC systems such as clusters are being increasingly used for
running data-intensive applications in science and technology. Therefore there is
a growing demand to incorporate relevant programming models and technologies
into a parallel and distributed computing (PDC) teaching curriculum.

The introduction of Big Data technologies in a PDC course brings a number
of challenges. First, these technologies are noticeably different from traditional
parallel programming technologies (e.g., MPI), by using other programming lan-
guages (e.g, Java, Scala or Python) and computing models (e.g., MapReduce or
Spark RDD). The Big Data applications are also quite different from the tra-
ditional HPC applications, which often motivates the development of special-
ized courses. Second, currently it is not possible to easily collocate Big Data

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

828



and HPC applications on a single computing cluster due to incompatible re-
source managers and resource allocation policies. This necessitates the provision
of dedicated computing infrastructure for such applications, e.g., Hadoop cluster.
Third, the implementation of practical exercises is challenging due to the inher-
ent complexity of involved systems and user interfaces. This is particularly true
for undergraduate or non-technical students without prior Linux background.
While the similar problem exists for traditional HPC systems, Big Data systems
have specific interfaces that should be taken into account.

This paper reports an experience on solving the mentioned challenges while
teaching two introductory PDC courses at the Yandex School of Data Analysis
(YSDA) and the Higher School of Economics (HSE). The Parallel and Dis-
tributed Computing course at YSDA is an introductory PDC course for MSc
students that features the following topics: concurrency, parallel programming
and distributed data processing. The similar course in HSE is for BSc students
from the Faculty of Computer Science. Both courses consider distributed com-
puting models and platforms for processing of large data sets.

In particular, the paper describes the software infrastructure and high-level
web services implemented in order to support practical exercises involving Big
Data technologies. The presented service-based approach helped to provide a
smooth practical experience for students with different technical background by
enabling them to run and test their programs on a Hadoop cluster via convenient
web interfaces. This approach also enabled automation of routine actions related
to submission of programs to a cluster and evaluation of homework solutions.

The paper is structured as follows. Section 2 discusses related work. Sec-
tion 3 provides an overview of the developed infrastructure. Section 4 describes
the computing infrastructure and how it was adapted to accommodate both
HPC and Big Data applications. Section 5 provides an overview of Everest, a
web-based distributed computing platform used for building the presented ser-
vices. Section 6 describes the generic services for running MapReduce and Spark
programs and the problem-specific services for evaluating solutions of related
programming assignments. Section 7 concludes and discusses future work.

2 Related Work

The use of web technologies for building convenient interfaces to HPC systems
has been exploited since the emergence of the World Wide Web. For example,
in [4] authors describe several prototypes of web-based parallel programming
environments, including the Virtual Programming Laboratory (VPL) used for
teaching parallel programming. The emergence of grid computing and the web
portal technology enabled development of grid portals facilitating access to dis-
tributed computing facilities. For example, [5] describes an experience of building
a grid portal to support an undergraduate parallel programming course.

The web-based interfaces have also been exploited to support submission and
automated evaluation of programming assignments in PDC courses. For exam-
ple, in [6] authors describe a framework enabling implementation of web portals

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

829



for automated testing of student programming assignments in distributed pro-
gramming courses. Among the recent works, [7] describes a web-based applica-
tion for automated assessment and evaluation of source code in the field of par-
allel programming. In [8] authors present a similar web-based system for running
and validating parallel programs written in different programming paradigms.

The web technologies are also being actively used nowadays for support-
ing Massive Open Online Courses (MOOC) with a large number of attendees.
For example, WebGPU is a web-based system developed to support GPU pro-
gramming assignments in the Heterogeneous Parallel Programming course [9].
In [10] authors describe the ”Introduction to Parallel Computing” course that
is developed on the base of Moodle learning management system and supports
automatic evaluation of parallel programs.

While the previously mentioned systems support teaching traditional PDC
topics, currently there exists only a few web-based environments focused on
teaching Big Data technologies. The only similar project is the WebMapReduce
(WMR) [11], which provides a simplified web interface to Hadoop designed for
teaching the MapReduce computing model. The WMR portal allows students to
write mappers and reducers in a variety of languages. The programs are executed
on a Hadoop cluster or in a testing environment that mimics the behavior of
Hadoop while running within a single thread. In contrast to WMR, the presented
infrastructure is more generic by supporting other technologies and computing
models beyond MapReduce, e.g., Spark, and addressing additional challenges
such as automated evaluation of homework assignments.

In addition, a variety of open source and commercial systems are currently
emerging that provide convenient web interfaces for working with Big Data
technologies [12–14], including interactive notebooks and dashboards. While not
specifically designed for teaching, these systems can also be used in educational
activities. The presented infrastructure relies on one of such interfaces, namely
Hue [12], for browsing the data stored on a Hadoop cluster.

3 Infrastructure Overview

A high-level overview of the infrastructure used to support practical exercises in
the mentioned courses is presented on Figure 1.

The computing infrastructure consists of a dedicated cluster with 20 nodes
which is split into two partitions for running HPC and Big Data workloads. The
students can optionally request a direct access to the cluster command line via
SSH. However, the default way to access the cluster is via a set of provided web
services that automate submission and execution of parallel programs on the
cluster. There are two main types of such services. The so called generic services
can be used to run arbitrary programs for some technology, e.g., MPI or MapRe-
duce. There are also problem-specific services that can be used for submission
and evaluation of solutions for homework assignments. The services are devel-
oped and deployed on Everest, a web-based distributed computing platform [15,
16] which supports integration with computing resources via special software

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

830



HPC
(OpenMP, MPI...)

Big Data
(Hadoop, Spark, Hue...)

Agent

Cluster

Job Manager

Services

OpenMP

MPI

MapReduce

Spark

Wikipedia HW

Twitter HW

Agent

Everest

SLURM YARN

Students Instructors

optional

Fig. 1. Architecture of supporting computing and software infrastructure

agents. These agents are deployed on the cluster and are used by the Everest
job manager for execution of programs submitted via the services.

The main advantage of the service-based approach is the ease of use and
ubiquity in comparison to the command line environment. Such environment and
queuing systems used on the cluster are unfamiliar and too low-level for many
students. The execution of programs of the cluster also implies manual copying
of required files that can be automated by the services, which is very convenient
for quick demonstrations in class. Another advantage of the presented approach
is the reduced administration overhead, since it does not require creation of
cluster accounts for each student. The management of students in Everest can be
automated by creating a dedicated user group and configuring a secret code for
self-registration by the students. Finally, the use of special services for evaluation
of homework assignments can provide an instant feedback for the students which
enhances the learning experience.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

831



4 Computing Infrastructure

As was previously mentioned, Big Data and HPC technologies use different re-
source managers and resource allocation policies. For example, while the execu-
tion of MPI applications on a cluster is usually managed by the batch system
such as SLURM or PBS, the execution of MapReduce programs is managed
by the YARN service, which is a part of Apache Hadoop platform. Also, while
MPI programs allocate and use a fixed subset of cluster resources, MapReduce
programs can dynamically allocate and release resources during their execution.
Therefore it is very hard to use a single resource manager for both types of
workloads.

To accommodate both HPC and Big Data applications the cluster was split
into two separate partitions. The first partition, managed by the SLURM batch
system and using the NFS file system, is dedicated for running HPC applications
such as MPI and OpenMP programs. The second partition, managed by the
YARN service and using the HDFS file system (also a part of Hadoop platform),
is dedicated for running Big Data applications such as Hadoop MapReduce and
Spark programs. The second partition also has a number of other Big Data
technologies installed such as Hive, HBase and Kafka.

Having two separate cluster partitions brought an issue of efficient cluster
utilization when one of the partitions is underutilized, for example when the
students study MPI programming and use only the HPC partition. Currently
the size of each partition can be changed by the administrator by manually
stopping and starting the SLURM and YARN daemons on the cluster nodes.
Given the known schedule of practical exercises by different courses using the
cluster, the manual tuning of partition sizes proved to be sufficient. However,
a more sophisticated automated tuning based on a current load can also be
implemented in the future.

Both partitions have configured limits of resource usage per program which
is essential in order to avoid the excessive use of cluster resources by inefficient
or misbehaving programs. The HPC partition imposes a limit on the wall clock
time used by a program. However, it is not possible to use a similar metric
for Big Data applications since their run time can depend on the current cluster
load. Therefore an alternative metric of consumed core-seconds was used to limit
the resource consumption for the second partition. Since Hadoop YARN doesn’t
support enforcement of resource usage limits, a special script was developed
that periodically checks the current resource consumption of running programs
and kills those that exceeded the configured limits. The preemption in YARN
scheduler is turned off in order to ensure stable execution and measurements,
especially for Spark programs.

5 Everest Overview

Everest [15] is a web-based distributed computing platform used for building
the services of the described infrastructure. In this section we provide a brief
overview of this platform.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

832



Everest provides users with tools to quickly publish and share computing ap-
plications as web services. The platform also manages execution of applications
on external computing resources attached by users. In contrast to traditional
distributed computing platforms, Everest implements the PaaS model by pro-
viding its functionality via remote web and programming interfaces. A single
instance of the platform can be accessed by many users in order to create, run
and share applications with each other. The platform is available online to all
interested users [16].

Everest supports development and execution of computing applications fol-
lowing a common model. An application has a number of inputs that constitute
a valid request to the application and a number of outputs that constitute a
result of computation corresponding to some request. Upon each request Ever-
est creates a new job consisting of one or more computational tasks generated
by the application according to the job inputs. The tasks are executed by the
platform on computing resources specified by a user.

To simplify creation of applications Everest provides a generic skeleton for
command-line applications that makes it possible to avoid programming while
adding an application. In addition to description of application inputs and out-
puts, the user should specify the command pattern parametrized by input values
and describe the mappings between inputs/outputs and files read/produced by
the application.

An application is automatically published as a RESTful web service with a
unified interface. This enables programmatic access to applications, integration
with third-party tools and composition of applications into workflows. The plat-
form’s web user interface also generates a web form for running the application
via web browser. The application owner can manage the list of users that are
allowed to run the application.

Instead of using a dedicated computing infrastructure, Everest performs exe-
cution of application tasks on external resources attached by users. The platform
implements integration with standalone machines and clusters through a devel-
oped program called agent. The agent runs on the resource and acts as a mediator
between it and Everest enabling the platform to submit and manage computa-
tions on the resource. Everest manages execution of tasks on remote resources
and performs routine actions related to staging of input files, submitting a task,
monitoring a task state and downloading task results.

6 Services

A number of web services have been developed using the Everest platform in
order to simplify and automate execution of various types of parallel programs
by the students on the cluster.

In order to create an application an instructor should specify via Everest Web
UI application’s metadata, input and output parameters, mapping of parameters
to the executed command and files, etc. The core part of the application is a
wrapper that takes input parameters and manages execution of a parallel pro-

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

833



gram on the cluster. The wrapper can be written in any programming language
since Everest runs it via command line. It usually performs program compila-
tion, preparing of execution environment, submitting the program via queuing
system, etc. The development of such wrapper is currently the most difficult
part of the process, however once implemented its parts can be reused for other
applications.

6.1 Generic Execution Services

The following generic services have been developed for execution of different
types of programs using Big Data technologies on the cluster. These services can
be used to run an arbitrary program of some specific type.

Two generic services were implemented for running Hadoop MapReduce pro-
grams. The first service supports programs written in Python using the Hadoop
Streaming interface, targeting students without Java skills. The submit form
of this service is presented on Figure 2. The second service supports Java pro-
grams using the Hadoop Java API. Both services allow specifying program files,
command line arguments, input and output paths in HDFS file system, number
of reduce tasks and additional Hadoop options. The wrapper script performs
submission of MapReduce job, monitors the job’s state and updates status in-
formation displayed in Everest. When the job is running, a student is provided
with a link to the job status page in the Hadoop web interface. After the job is
completed the total resource usage in core-seconds is displayed along with a link
to the job history interface with task logs. This provides enough information to
troubleshoot failed programs or evaluate the program’s efficiency.

Two similar services were implemented for running Apache Spark programs
written in Python or Scala/Java on the cluster. In comparison to the MapReduce
services, the Spark services have more sophisticated runtime parameters such as
the number of executors, cores and memory per executor. It is also possible to
specify the minimum ratio of registered executors to wait for before starting
computations. This enables students to examine various trade-offs related to us-
ing different values of runtime parameters. The corresponding wrapper script
is also more sophisticated. It allows to limit the maximum amount of physi-
cal resources requested by the program and the number of concurrent jobs per
user. The wrapper script also computes the effective resource usage for a Spark
program by excluding core-seconds spent while waiting for the executors.

Upon the program submission the student is redirected to the job page that
displays dynamically updated information about the job state. The job page also
includes sections containing general information about the job, inputs specified
by the student and outputs produced by the job. For teaching purposes the
services were configured to automatically share all jobs submitted by the students
with the instructors group, so that in case of a problem a student can just send
a link to a failed job to the instructor.

Due to the large size of input data and produced results, in addition to
running programs on Hadoop cluster it was essential to provide a way to easily
browse files stored in the HDFS file system without fully downloading them.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

834



Fig. 2. The submit form of the service for running Hadoop MapReduce programs

This was achieved by using Hue [12], a web interface for Hadoop which includes
a convenient HDFS file browser. Hue also provides a web interface for running
jobs, however it is more complicated and low level in comparison to the developed
services.

6.2 Services for Programming Assignments

The evaluation of programming assignments requires a significant effort and is
one of the key scalability bottlenecks in terms of a number of students. The

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

835



generic services described above can be used for quick demonstrations, practical
exercises and projects. However, they usually do not provide a feedback needed
to validate solutions to programming assignments. For example, whether the
program produced a correct result or has a good performance. Such immediate
feedback is crucial for students since it helps to avoid manual validation and to
focus on the solution. This feedback can also help instructors to reduce the time
and effort needed to grade the solution.

A set of problem-specific services have been implemented for automated eval-
uation of homework assignments related to Big Data technologies. These services
are implemented on Everest using the same approach as the previously discussed
generic execution services. However, in this case the wrapper is replaced by a
test suite for the given assignment.

The first assignment is dedicated to the MapReduce programming model and
its implementation in Hadoop. The students should use MapReduce to build in-
verted index of the contents of Wikipedia pages. The solution of this assignment
requires multiple MapReduce steps such as computing a list of frequent words
excluded from the index and building an index itself for English and Russian
versions of Wikipedia. Since it is difficult to implement an interface for specifying
and running all these steps, the provided service doesn’t perform the execution
of solutions and only checks the provided results. The student should pass to the
service the HDFS paths to the produced indexes. The service runs a script that
checks that the index conforms to all requirements specified in the assignment.
The students should include the link to test results in the homework report along
with the links to all program runs via generic MapReduce services used to build
the indexes. Instructors can view all programs created by a student by follow-
ing these links in Everest. The generic services and job history web interfaces
provide enough information to evaluate the efficiency of each program.

The second assignment is dedicated to using Apache Spark and its Resilient
Distributed Datasets (RDD) programming model. The students should compute
a number of results given a graph of follower relationships between Twitter users,
such as the average count of followers, the most popular users and the number
of users that can be reached by a tweet from popular users. The solution of this
assignment also requires multiple steps, however, in contrast to MapReduce,
these steps can be run as a single job in Spark. Nevertheless, to provide the
maximum flexibility, the similar approach was used as in the previous assignment
by implementing a service that only checks the produced results. This enabled
students to incrementally compute and check different results. Again the students
were asked to provide links to all submissions via generic services used to produce
all results.

7 Conclusion

The paper presented an experience in incorporating Big Data technologies into
introductory PDC courses and building a service-oriented infrastructure to sup-
port practical exercises involving these technologies. The presented approach

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

836



helped to provide a smooth practical experience for students with different tech-
nical background by enabling them to run and test their MapReduce and Spark
programs on a provided Hadoop cluster via convenient web interfaces. This ap-
proach also enabled automation of routine actions related to submission of pro-
grams to a cluster and evaluation of programming assignments.

Future work will focus on improving the presented infrastructure and pub-
lishing the service implementations to enable other educators to reproduce the
presented approach using the Everest platform.

Acknowledgments

This work is supported by the Russian Science Foundation (project No. 16-11-
10352).

References

1. Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

2. Tom White. Hadoop: The definitive guide. O’Reilly Media, Inc., 2012.
3. Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion

Stoica. Spark: Cluster computing with working sets. HotCloud, 10(10-10):95, 2010.
4. Kivanc Dincer and Geoffrey C Fox. Design issues in building web-based parallel

programming environments. In High Performance Distributed Computing, 1997.
Proceedings. The Sixth IEEE International Symposium on, pages 283–292. IEEE,
1997.

5. Juan Touriño, Maŕıa J Mart́ın, Jacobo Tarŕıo, and Manuel Arenaz. A grid portal
for an undergraduate parallel programming course. Education, IEEE Transactions
on, 48(3):391–399, 2005.

6. Paolo Maggi and Riccardo Sisto. A grid-powered framework to support courses on
distributed programming. Education, IEEE Transactions on, 50(1):27–33, 2007.

7. Moritz Schlarb, Christian Hundt, and Bertil Schmidt. Sauce: A web-based au-
tomated assessment tool for teaching parallel programming. In Euro-Par 2015:
Parallel Processing Workshops, pages 54–65. Springer, 2015.

8. Marek Nowicki, Maciej Marchwiany, Maciej Szpindler, and Piotr Ba la. On-line
service for teaching parallel programming. In Euro-Par 2015: Parallel Processing
Workshops, pages 78–89. Springer, 2015.

9. Heterogeneous Parallel Programming. [online].
https://www.coursera.org/course/hetero.

10. Victor Gergel and Valentina Kustikova. Internet-oriented educational course intro-
duction to parallel computing: A simple way to start. In Russian Supercomputing
Days, pages 291–303. Springer, 2016.

11. Patrick Garrity, Timothy Yates, Richard Brown, and Elizabeth Shoop. Webmapre-
duce: an accessible and adaptable tool for teaching map-reduce computing. In
Proceedings of the 42nd ACM technical symposium on Computer science educa-
tion, pages 183–188. ACM, 2011.

12. Hue. [online]. http://gethue.com/.
13. Databricks Platform. [online]. https://databricks.com/product/databricks.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

837



14. Cloudera Data Science Workbench. [online].
https://www.cloudera.com/products/data-science-and-engineering/data-science-
workbench.html.

15. O. Sukhoroslov, S. Volkov, and A. Afanasiev. A web-based platform for publication
and distributed execution of computing applications. In Parallel and Distributed
Computing (ISPDC), 2015 14th International Symposium on, pages 175–184, June
2015.

16. Everest. [online]. http://everest.distcomp.org/.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

838


