
Automatic SIMD Vectorization of Loops:
Issues, Energy Efficiency and Performance

on Intel Processors

Olga MoldovanovaB and Mikhail Kurnosov

Siberian State University of Telecommunications and Information Sciences,
Novosibirsk, Russia

Rzhanov Institute of Semiconductor Physics,
Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia

{ovm,mkurnosov}@isp.nsc.ru

Abstract. In this paper we analyse how well compilers vectorize a well-
known benchmark ETSVC consisting of 151 loops. The compilers we
evaluated were Intel C/C++ 17.0, GCC C/C++ 6.3.0, LLVM/Clang
3.9.1 and PGI C/C++ 16.10. In our experiments we use dual CPU sys-
tem (NUMA server, 2 x Intel Xeon E5-2620 v4, Intel Broadwell microar-
chitecture) with the Intel Xeon Phi 3120A co-processor. We estimate
time, energy and speedup by running the loops in scalar and vector
modes for different data types (double, float, int, short int) and deter-
mine loop classes which the compilers fail to vectorize. The Running
Average Power Limit (RAPL) subsystem is used to obtain the energy
measurements. We analyzed and proposed transformations for the loops
that compilers failed to vectorize. After applying proposed transforma-
tions loops were successfully auto-vectorized by all compilers. The most
part of the transformations based on loop interchange, fission by name
and distribution.
Keywords: Loops · Compilers · Automatic Vectorization · CPU Energy
Consumption · Intel Xeon · Intel Xeon Phi

1 Introduction

Modern high-performance computer systems are multiarchitectural systems
and implement several levels of parallelism: process level parallelism (PLP, mes-
sage passing), thread level parallelism (TLP), instruction level parallelism (ILP),
and data level parallelism (data processing by several vector arithmetic logic
units). Processor vendors pay great attention to the development of vector ex-
tensions (Intel AVX, IBM AltiVec, ARM NEON SIMD). In particular, Fujitsu
announced in its future version of the exascale K Computer system a transition
to processors with the ARMv8.2-A architecture, which implements scalable vec-
tor extensions. And Intel extensively develops AVX-512 vector extension. That
is why problem definitions and works on automatic vectorizing compilers have
given the new stage in development in recent decades: OpenMP and Cilk Plus

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

55

SIMD directives; Intel ISPC and Sierra language extensions; libraries: C++17
SIMD Types, Boost.SIMD, gSIMD, Cyme.

In this work we studied time, energy and speedup by running the loops in
scalar and vector modes for different data types (double, float, int, short
int) and compilers (Intel C/C++ Compiler, GCC C/C++, LLVM/Clang, PGI
C/C++). The main goal is to determine loop classes which the compilers fail
to vectorize. The Running Average Power Limit (RAPL) subsystem is used to
obtain the energy measurements.

Since there was no information about vectorizing methods implemented in
the commercial compilers, the evaluation was implemented by the ”black box”
method. We used the Extended Test Suite for Vectorizing Compilers [1–4] as a
benchmark for our experiments to estimate an evolution of vectorizers in modern
compilers comparing to an evaluation made in [1]. We determined classes of typ-
ical loops that the compilers used in this study failed to vectorize and evaluated
them.

The rest of this paper is organized as follows: Section 2 discusses the main
issues that explain effectiveness of vectorization; Section 3 describes the bench-
mark we used; Section 4 presents results of our experiments; and finally Section 5
concludes.

2 Vector Instruction Sets

Instruction sets of almost all modern processor architectures include vector
extensions: MMX/SSE/AVX in the IA-32 and Intel 64 architectures, AltiVec
in the Power architecture, NEON SIMD in the ARM architecture family, MSA
in the MIPS. Processors implementing vector extensions contain one or several
vector arithmetic logic units (ALU) functioning in parallel and several vector
registers. Unlike vector systems of the 1990s, modern processors support execu-
tion of instructions with relatively short vectors (64-512 bits), loaded in advance
from the RAM to the vector registers (”register-register” vector systems).

The main application of the vector extensions consists in decreasing of time
of one-dimensional arrays processing. As a rule, a speedup achieved using the
vector extensions is primarily determined by the number of array elements that
can be loaded into a vector register. For example, each of 16 AVX vector registers
is 256-bit wide. This allows loading into them 16 elements of the short int type
(16 bits), 8 elements of the int or float type (32 bits) and 4 double elements
(64 bits). Thus, when using AVX the expected speedup is 16 times for operations
with short int elements, 8 times for int and float, and 4 for double.

The Intel Xeon Phi processors support AVX-512 vector extension and contain
32 512-bit wide vector registers. Each processor core with the Knights Corner
microarchitecture contains one 512-bit wide vector ALU, and processor cores
with the Knights Landing microarchitecture have two ALUs.

To achieve a maximum speedup during vector processing it is necessary to
consider the microarchitectural system parameters. One of the most important of
them is an alignment of array initial addresses (32-byte alignment for AVX and

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

56

64-byte alignment for AVX-512). Reading from and writing to unaligned memory
addresses is executed slower. Effectiveness decreasing can also be caused by a
mixed usage of SSE and AVX vector extensions. In such a case during transition
from execution of one vector extension instructions to another one a processor
stores (during transition from AVX to SSE) or restores (in another case) highest
128 bits of YMM vector registers (AVX-SSE transition penalties) [5].

When vector instructions are used, the achieved speedup can exceed the
expected one. For example, after vectorization of the loop, which calculates an
elementwise sum of two arrays, the processor overhead decreases due to reducing
the number of add instruction loads from the memory and its decoding by the
processor; the number of memory accesses for operands of the add instruction;
the amount of calculations of loop end condition (the number of accesses to the
branch prediction unit of the processor).

Besides that, a parallel execution of vector instructions by several vector
ALUs can be a reason of additional speedup. Thus, an efficiently vectorized pro-
gram overloads subsystems of a superscalar pipelined processor in a less degree.
This is the reason of less processor energy consumption during execution of a
vectorized program as compared to its scalar version [6].

Application developers have different opportunities to use vector instructions:

– inline assembler – full control of vectorization usage, least portable approach;
– intrinsics – set of data types and internal compiler functions, directly map-

ping to processor instructions (vector registers are allocated by compiler);
– SIMD directives of compilers, OpenMP and OpenACC standards;
– language extensions, such as Intel Array Notation, Intel ISPC, Apple Swift

SIMD and libraries: C++17 SIMD Types, Boost.SIMD, SIMD.js;
– automatic vectorizing compiler – ease of use, high code portability.

In this work, we study the last approach. Such vectorizing technique does
not require large code modification and provides its portability between different
processor architectures.

3 Related Works and Benchmarks

We used the Extended Test Suite for Vectorizing Compilers (ETSVC) [2] as
a benchmark containing main loop classes, typical for scientific applications in
C language. The original package version was developed in the late 1980s by
the J. Dongarra’s group and contained 122 loops in Fortran to test the analy-
sis capabilities of automatic vectorizing compilers for vector computer systems:
Cray, NEC, IBM, DEC, Fujitsu and Hitachi [3, 4]. In 2011 the D. Padua’s group
translated the TSVC suite into C and added to it new loops [1]. The extended
version of the package contains 151 loops. The loops are divided into categories:
dependence analysis (36 loops), vectorization (52 loops), idiom recognition (re-
ductions, recurrences, etc., 27 loops), language completeness (23 loops). Besides
that, the test suite contains 13 ”control” loops, trivial loops that are expected
to be vectorized by every vectorizing compiler.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

57

The loops operate on one- and two-dimensional 16-byte aligned global arrays.
The one-dimensional arrays contain 125 · 1024/sizeof(TYPE) elements of the
given type TYPE, and the two-dimensional ones contain 256 elements by each
dimension.

Each loop is contained in a separate function (see Listing 1). In the init
function (line 5) an array is initialized by individual for this test values before
loop execution. The outer loop (line 7) is used to increase the test execution time
(for statistics issues). A call to an empty dummy function (line 10) is used in each
iteration of the outer loop so that, in case where the inner loop is invariant with
respect to the outer loop, the compiler is still required to execute each iteration
rather than just recognizing that the calculation needs to be done only once [4].

After execution of the loop is complete, a checksum is computed by using
elements of the resulting array (check function, line 16).

Listing 1. Example loop from the ETSVC benchmark

1 # define TYPE float
2 # define lll (125 * 1024 / sizeof (TYPE))
3 # define ntimes 200000
4 int s000 () {
5 init("s000 ");
6 clock_t start_t = clock ();
7 for (int nl = 0; nl < 2 * ntimes ; nl ++) {
8 for (int i = 0; i < lll; i++)
9 X[i] = Y[i] + 1;

10 dummy ((TYPE *)X, (TYPE *)Y, (TYPE *)Z, (TYPE *)U,
11 (TYPE *)V, aa , bb , cc , 0.0);
12 }
13 clock_t end_t = clock (); clock_dif = end_t - start_t ;
14 printf ("S000\t %.2f \t\t",
15 (double)(clock_dif / 1000000.0));
16 check (1);
17 return 0;
18 }

4 Results of Experiments

4.1 Test Environment

We used two systems for our experiments. The first system was a server
based on two Intel Xeon E5-2620 v4 CPUs (Intel 64 architecture, Broadwell
microarchitecture, 8 cores, Hyper-Threading was on, AVX 2.0 support), 64 GB
RAM DDR4, GNU/Linux CentOS 7.3 x86-64 operating system (linux 3.10.0-
514.2.2.el7 kernel). The second system was Intel Xeon Phi 3120A co-processor
(Knights Corner microarchitecture, 57 cores, AVX-512 support, 6 GB RAM,
MPSS 3.8) installed in the server.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

58

The compilers evaluated in these experiments were Intel C/C++ Compiler
17.0; GCC C/C++ 6.3.0; LLVM/Clang 3.9.1; and PGI C/C++ 16.10. The vec-
torized version of the ETSVC benchmark was compiled with the command line
options shown in Table 1 (column 2). To generate the scalar version of the test
suite the optimization options were used with the disabled compilers vectorizer
(column 3, Table 1).

Table 1. Compilers options

Compiler Compilers Options Disabling Vectorizer

Intel C/C++
17.0

-O3 -xHost -qopt-report3
-qopt-report-phase=vec,loop

-qopt-report-embed
-no-vec

GCC C/C++
6.3.0

-O3 -ffast-math -fivopts
-march=native -fopt-info-vec

-fopt-info-vec-missed
-fno-tree-vectorize

LLVM/Clang
3.9.1

-O3 -ffast-math -fvectorize
-Rpass=loop-vectorize

-Rpass-missed=loop-vectorize
-Rpass-analysis=loop-vectorize

-fno-vectorize

PGI C/C++
16.10

-O3 -Mvect -Minfo=loop,vect
-Mneginfo=loop,vect

-Mnovect

32-byte aligned global arrays were used for the Intel Xeon processor, and
64-byte aligned global arrays were used for the Intel Xeon Phi processor. We
used arrays with elements of double, float, int and short data types for our
evaluation.

4.2 Results for Intel 64 Architecture

The following results were obtained for the double data type on the In-
tel 64 architecture (Intel Xeon Broadwell processor). The Intel C/C++ Com-
piler vectorized 95 loops in total, 7 from which were vectorized by it alone. For
GCC C/C++ the total amount of vectorized loops was 79. But herewith there
was no loop that was vectorized only by this compiler. The PGI C/C++ vector-
ized the largest number of loops, 100, 13 from them were vectorized by it alone.
The minimum number of loops was vectorized by the LLVM/Clang compiler,
52, 4 from which were vectorized only by it. The number of loops unvectorized
by any compiler was equal to 28.

We compared the obtained results with the evaluation done in [1]. The com-
parison shows that the vectorizer of the GCC C/C++ compiler has been signif-
icantly improved: 52.3 % of vectorized loops from ETSVC in 2017 versus 32 %
in 2011 (see Table 2).

The similar results were obtained for arrays with elements of the float and
int types by all compilers. The consistent results were obtained for the short

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

59

Table 2. Comparison of results with previous evaluations of compilers

2011 (Padua et al. [1]) 2017 (our work)
Intel C/C++ 90 loops Intel C/C++ 95 loops

12.0 (59.6 %) 17.0 (62.9 %)
GCC C/C++ 59 loops GCC C/C++ 79 loops

4.7.0 (39 %) 6.3.0 (52.3 %)

type when Intel C/C++ Compiler, GCC C/C++ and LLVM/Clang were used.
The exception to this rule was the PGI C/C++ compiler that vectorized no
loops processing data of this type.

Figure 1 shows the results of loop vectorization for the double data type
on the Intel 64 architecture. Abbreviated notations of the vectorization results
are shown in the table cells. They were obtained from vectorization reports of
compilers for all 151 loops. The full form of these notations is shown in Table 3.
The similar results were obtained for other data types.

ICC V IF V IF V V D V V V V D RV M V D D V V D V V V V D V D D V M D D V V D V V V V PV V PV M D IF V V PV PV D

PGI V IF V V V V D V V V D V V V V NI D D V D V D V V D FC FC D V D D NI V V NI V D D D D D D V D IF V V V D D

LLVM V IF IF D V D D D D IF R R V V V NI CF CF V R IF IF V V R V V CF CF V V NI V V NI V R R R R V R R R IF R R R D R

GCC V IF V V V V M BO V AP D IL V V V NI SS V V AP V V V V IL V FC M M M IF NI V V NI V D D D D V D V IL IL D M V D D

S0
0
0

S1
1
1

S1
1
1
1

S1
1
2

S1
1
1
2

S1
1
3

S1
1
1
3

S1
1
4

S1
1
5

S1
1
1
5

S1
1
6

S1
1
8

S1
1
9

S1
1
1
9

S1
2
1

S1
2
2

S1
2
3

S1
2
4

S1
2
5

S1
2
6

S1
2
7

S1
2
8

S1
3
1

S1
3
2

S1
4
1

S1
5
1

S1
5
2

S1
6
1

S1
1
6
1

S1
6
2

S1
7
1

S1
7
2

S1
7
3

S1
7
4

S1
7
5

S1
7
6

S2
1
1

S2
1
2

S1
2
1
3

S2
2
1

S1
2
2
1

S2
2
2

S2
3
1

S2
3
2

S1
2
3
2

S2
3
3

S2
2
3
3

S2
3
5

S2
4
1

S2
4
2

ICC PV PV PV V V V D V V V V D D D D V V V V V V PV V D V V V V V V D V V V D V PV D V IF V V V IF V V V V D V

PGI D D D D V V V V V V V V D D V D V V V V D V IF D V V V V V V D V V V D IF V V V FC V V V V V V V V V V

LLVM V D D V V V R V V CF V R R OL R R CF CF CF CF R IF UV CF CF CF CF CF CF CF D V R R D IF IF R V FC V V V R V V R V R V

GCC D D D V V V US V US V US US AP BO US D V V V V CF V V D M CF CF V V V V V US US V IF IF D V FC V V V CF V V US V US V

S2
4
3

S2
4
4

S1
2
4
4

S2
2
4
4

S2
5
1

S1
2
5
1

S2
2
5
1

S3
2
5
1

S2
5
2

S2
5
3

S2
5
4

S2
5
5

S2
5
6

S2
5
7

S2
5
8

S2
6
1

S2
7
1

S2
7
2

S2
7
3

S2
7
4

S2
7
5

S2
2
7
5

S2
7
6

S2
7
7

S2
7
8

S2
7
9

S1
2
7
9

S2
7
1
0

S2
7
1
1

S2
7
1
2

S2
8
1

S1
2
8
1

S2
9
1

S2
9
2

S2
9
3

S2
1
0
1

S2
1
0
2

S2
1
1
1

S3
1
1

S3
1
1
1
1

S3
1
2

S3
1
3

S3
1
4

S3
1
5

S3
1
6

S3
1
7

S3
1
8

S3
1
9

S3
1
1
0

S1
3
1
1
0

ICC V D V D D D V ME D D D V V V IF V V M M M V V IF V V V V V ME ME V V V V V V V V M V V V V V V V V V V V V

PGI V V V D D D V ME V V V V V V IF V V V V V V V V V V IF V V FC ME V V IF D V V V V V IF V V V V V V V V V V V

LLVM R R V R R R R UV CF CF CF IF V IF IF V V V V V V CF SW CF V IF R V UV NI IF IF IF IF IF IF IF V FC IF IF CF V V V V V V V V V

GCC V US V D D D US CF SS US SS V V GS BO V V V V V V CF CF V BO V V V CF CF SS V SS V V V V V CF V SS V V V V V V V V V V

S3
1
1
1

S3
1
1
2

S3
1
1
3

S3
2
1

S3
2
2

S3
2
3

S3
3
1

S3
3
2

S3
4
1

S3
4
2

S3
4
3

S3
5
1

S1
3
5
1

S3
5
2

S3
5
3

S4
2
1

S1
4
2
1

S4
2
2

S4
2
3

S4
2
4

S4
3
1

S4
4
1

S4
4
2

S4
4
3

S4
5
1

S4
5
2

S4
5
3

S4
6
1

S4
8
1

S4
8
2

S4
9
1

S4
1
1
2

S4
1
1
3

S4
1
1
4

S4
1
1
5

S4
1
1
6

S4
1
1
7

S4
1
2
1

va va
g

va
s

vi
f

vp
v

vt
v

vp
vt
v

vp
vt
s

vp
vp
v

vt
vt
v

vs
u
m
r

vd
o
tr

vb
o
r

Fig. 1. Results of loops vectorization (Intel 64 architecture, double data type)

In the ”Dependence analysis” category 9 loops were not vectorized by any
compiler for the double data type. The compilers used in this study failed to
vectorize loops with linear dependences (1st order recurrences), induction vari-
ables together with conditional and unconditional (goto) branches, loop nesting
and variable values of lower and/or upper loop bounds and/or iteration step.
In the last case, no compiler could determine whether a data dependence was
present and took a pessimistic decision that the dependence existed.

In the ”Vectorization” category the compilers failed to vectorize 11 loops.
These loops required transformations as follows: loop fission, loop interchange,
node splitting (to avoid cycles in data dependence graphs and output and anti-
dependences [7]) and array expansions. Among causes of problems were interde-
pendence of iteration counts of nested loops; linear dependencies in a loop body
(1st order recurrences); conditional and unconditional branches in a loop body.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

60

Table 3. Abbreviated notations of vectorization results

V Loop is vectorized

PV Partial loop is vectorized (loop fission with succeeding vectorization of
obtained loops)

RV Remainder is not vectorized
IF Vectorization is possible but seems inefficient

D Vector dependence prevents vectorization (supposed linear or non-linear data
dependence in a loop)

M Loop is multiversioned (multiple loop versions are generated, unvectorized
version is selected in runtime)

BO Bad operation or unsupported loop bound (e.g., sinf or cosf function is
used)

AP Complicated access pattern (e.g., value of iteration count is more than 1)

R Value that could not be identified as function is used outside the loop
(induction variables are present in a loop)

IL Inner-loop count not invariant (e.g., iteration count of inner loop depends on
iteration count of outer loop)

NI Number of iterations cannot be computed (lower and/or upper loop bounds
are set by function’s arguments)

CF Control flow cannot be substituted for a select (conditional branches inside
loop)

SS Loop is not suitable for scatter store (e.g., in case of packing a
two-dimensional array into a one-dimensional array)

ME Loop with multiple exits cannot be vectorized (break or exit are present
inside a loop)

FC Loop contains function calls or data references that cannot be analyzed

OL Value cannot be used outside the loop (scalar expansion or mixed usage of
one- and two-dimensional arrays in one loop)

UV Loop control flow is not understood by vectorizer (conditional branches
inside a loop)

SW Loop contains a switch statement

US Unsupported use in statement (scalar expansion, wraparound variables
recognition)

GS No grouped stores in basic block (unrolled scalar product)

The following idioms (6 loops) from the ”Idiom recognition” category were
not vectorized by the compilers used: 1st and 2nd order recurrences, array search-
ing, loop rerolling and reduction with function calls. The loops with recurrences
were not vectorized because of linear data dependence. In a loop with array
searching for the first element meeting a condition the unconditional branch
goto prevented vectorization.

Compilers execute rerolling for loops that were unrolled by hand before vec-
torization [8]. The compilers in this study decided that vectorization of such
loops was possible but inefficient. The reason was an indirect addressing in ar-
ray elements access: X[Y[i]], where X is a one-dimensional array of the float

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

61

type, Y is a pointer to a one-dimensional array of integers, i is a loop iteration
count.

The next challenging idiom was a reduction, namely sum of elements of a
one-dimensional array. In this case the idiom was not vectorized because of
test function calls. This function calculated sum of 4 array elements beginning
from the one passed as the function argument. The Intel C/C++ Compiler
reported that vectorization was possible but inefficient. Other compilers reported
a function call as a reason of vectorization failing.

The ”Language completeness” category contain 2 loops unvectorized by any
compiler. The problem of both loops consisted in breaking loop computations
(exit in the first case and break in the second case). Compiler vectorizers could
not analyze control flow in these loops.

Total execution time of the benchmark (all loops) for each data type and com-
piler is shown in Figure 2. A median value and maximum speedups of vectorized
loops are shown in Figs. 3 and 4. The maximum speedup obtained on the Intel
64 architecture by the Intel C/C++ was 6.96 for the double data type, 13.89
for the float data type, 12.39 for int and 25.21 for short int. The maximum
speedup obtained by GCC C/C++ was equal to 4.06, 8.1, 12.01 and 24.48 for
types double, float, int and short int, correspondingly. The LLVM/Clang
obtained results as follows: 5.12 (double), 10.22 (float), 4.55 (int) and 14.57
(short int). For PGI C/C++ these values were 14.6, 22.74, 34.0 and 68.0, cor-
respondingly. The speedup is the ratio of the running time of the scalar code
over the running time of the vectorized code.

1283

2270
1988

4115

1510

2225
1896

3789

1312

2020
1691

3477

1598

2650

2171

4089

812
978 1002

1611

888

1247
1445

3706

1125
1400 1377

2262

985
1235 1148

2425

0

500

1000

1500

2000

2500

3000

3500

4000

4500
ICC PGI LLVM/Clang GCC

E
x

ec
u

ti
o

n
 t

im
e,

 s
ec

Fig. 2. Execution time of the benchmark (all loops) on the Intel Xeon E5-2620 v4
CPU: outer columns – scalar version of the benchmark; inner columns – vectorized
version of the benchmark

As our evaluation showed maximum speedups for Intel C/C++ Compiler,
GCC C/C++ and LLVM/Clang correspond to the loops executing reduction op-
erations (sum, product, minimum and maximum) with elements of one-dimensio-
nal arrays of all data types. These loops belong to the ”Idiom recognition” cat-

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

62

1.83

3.48

2.91

6.13

1.57

2.442.282.42

1.42

2.58
2.23

4.56

2.22

3.62
3.26

6.84

0

1

2

3

4

5

6

7

8

S
p

ee
d

u
p

(m
ed

ia
n

 v
a
lu

e)

ICC

PGI

LLVM/Clang

GCC

Fig. 3. Median value of speedup for vectorized loops on the Intel Xeon E5-2620 v4
CPU (only speedups above 1.15 were considered)

6.96

13.8912.39

25.21

14.6

22.74

34.00

68.00

5.12

10.22

4.55

14.57

4.06
8.10

12.01

24.48

0

10

20

30

40

50

60

70

80

ICC

PGI

LLVM/Clang

GCC

S
p

ee
d

u
p

(m
a
x
im

u
m

)

Fig. 4. Maximum speedup for vectorized loops on the Intel Xeon E5-2620 v4 CPU

egory in the ETSVC. For PGI C/C++ maximum speedup was achieved for the
loop calculating an identity matrix (”Vectorization” category) for the double
and float data types. And for int and short this value was obtained in the
loop calculating product reduction (”Idiom recognition” category).

However, the obtained speedup is not always a result of vectorization. For
the PGI C/C++ compiler the speedup value 68.0 for the short data type can be
explained by the fact that calculations in a loop are not executed at all because
of the compiler optimization.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

63

4.3 Results for Intel Xeon Phi Architecture

On the Intel Xeon Phi architecture we studied vectorizing capabilities of the
Intel C/C++ Compiler 17.0. The -mmic command line option was used instead
of the -xHost during compilation. The results of the experiments for two data
types are shown in Fig. 5. The compiler could vectorize 99 loops processing data
of the double type and 102 of the float type. Supposed data dependencies (28
loops for the double type and 27 for the float type) were the main reason of
loop vectorization failing. 12 loops were partially vectorized for both data types.
Similar results were obtained for the int and short types.

In this case the maximum speedup for the double type was 13.7, for float –
19.43, int – 30.84, and short – 46.3. For float and short maximum speedups
were obtained for loops executing reduction operations for elements of one-
dimensional arrays. For the double data type sinf and cosf functions were
used in a loop. In the case with int it was a ”control” loop vbor calculating a
scalar product of six one-dimensional arrays.

double V V V V V V D V V V PV D V D V D D V V D V V V V D V D D V M D D V V D V V V V PV RV PV M D IF V V PV PV D

float V V V V V V D V V V PV D V D V D D V V D V V V V D V D D V M D D V V D V V V V PV PV PV M D V V V PV PV PV

S0
0
0

S1
1
1

S1
1
1
1

S1
1
2

S1
1
1
2

S1
1
3

S1
1
1
3

S1
1
4

S1
1
5

S1
1
1
5

S1
1
6

S1
1
8

S1
1
9

S1
1
1
9

S1
2
1

S1
2
2

S1
2
3

S1
2
4

S1
2
5

S1
2
6

S1
2
7

S1
2
8

S1
3
1

S1
3
2

S1
4
1

S1
5
1

S1
5
2

S1
6
1

S1
1
6
1

S1
6
2

S1
7
1

S1
7
2

S1
7
3

S1
7
4

S1
7
5

S1
7
6

S2
1
1

S2
1
2

S1
2
1
3

S2
2
1

S1
2
2
1

S2
2
2

S2
3
1

S2
3
2

S1
2
3
2

S2
3
3

S2
2
3
3

S2
3
5

S2
4
1

S2
4
2

double PV PV PV V V V D V V V V D D D D V V V V V V PV V D V V V V V V D V V V D V PV D V IF V V V V V V V V D V

float PV PV PV V V V D V V V V D D D D V V V V V V PV V D V V V V V V D V V V D V PV D V IF V V V V V V V V D V

S2
4
3

S2
4
4

S1
2
4
4

S2
2
4
4

S2
5
1

S1
2
5
1

S2
2
5
1

S3
2
5
1

S2
5
2

S2
5
3

S2
5
4

S2
5
5

S2
5
6

S2
5
7

S2
5
8

S2
6
1

S2
7
1

S2
7
2

S2
7
3

S2
7
4

S2
7
5

S2
2
7
5

S2
7
6

S2
7
7

S2
7
8

S2
7
9

S1
2
7
9

S2
7
1
0

S2
7
1
1

S2
7
1
2

S2
8
1

S1
2
8
1

S2
9
1

S2
9
2

S2
9
3

S2
1
0
1

S2
1
0
2

S2
1
1
1

S3
1
1

S3
1
1
1
1

S3
1
2

S3
1
3

S3
1
4

S3
1
5

S3
1
6

S3
1
7

S3
1
8

S3
1
9

S3
1
1
0

S1
3
1
1
0

double V D V D D D V ME V V V V PV V V V V M M M V V V V V V V V ME ME V V V PV V V V V V V V V V V V V V V V V V

float V D V D D D V ME V V V V V V V V V M M M V V V V V V V V ME ME V

S3
1
1
1

S3
1
1
2

S3
1
1
3

S3
2
1

S3
2
2

S3
2
3

S3
3
1

S3
3
2

S3
4
1

S3
4
2

S3
4
3

S3
5
1

S1
3
5
1

S3
5
2

S3
5
3

S4
2
1

S1
4
2
1

S4
2
2

S4
2
3

S4
2
4

S4
3
1

S4
4
1

S4
4
2

S4
4
3

S4
5
1

S4
5
2

S4
5
3

S4
6
1

S4
8
1

S4
8
2

S4
9
1

S4
1
1
2

S4
1
1
3

S4
1
1
4

S4
1
1
5

S4
1
1
6

S4
1
1
7

S4
1
2
1

va va
g

va
s

vi
f

vp
v

vt
v

vp
vt
v

vp
vt
s

vp
vp
v

vt
vt
v

vs
u
m
r

vd
o
tr

vb
o
r

Fig. 5. Results of loops vectorization (Intel Xeon Phi architecture)

4.4 Effect of Vectorization on CPU Energy Consumption

We modified the ETSVC benchmark to measure the CPU (Intel Xeon E5-
2620v4) energy for each loop. The measurements were accomplished by using the
Intel RAPL (Running Average Power Limit) subsystem before and after each
loop execution. We requested information about total CPU energy consumption
(RAPL PKG domain) and DRAM controller energy consumption (RAPL DRAM
domain) from the RAPL subsystem.

For every loop we determined the decrease E of CPU energy consumption
(RAPL PKG domain) for vectorized loop execution against its scalar version
execution:

E = (Enovec − Evec)/Enovec · 100%, (1)

where Enovec is CPU energy for scalar loop execution ([Enovec] = J), Evec is
CPU energy for vectorized loop execution ([Evec] = J).

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

64

In Table 4 we show the results for the decrease E of CPU energy consump-
tion only for successfully vectorized loops, execution time of which is less than
execution time of their scalar versions at least on 15%.

For arrays with elements of double type vectorized loops decreased the CPU
energy consumption by a mean of 45% as compared to their scalar versions. For
float, int and short int the CPU energy consumption decrease was 64%, 58%
and 90%, correspondingly.

It is apparent that for the ETSVC benchmark increasing the number of array
elements which can be loaded into a vector register (due to decreasing the size
of data type) results in decreasing the CPU energy consumption.

Table 4. Statistical characteristics for the the decrease E of CPU energy consumption
(for successfully vectorized loops, execution time of which is less than execution time
of their scalar versions at least on 15%)

Compiler Data Type Min, % Max, % Avg, % Median, %
double 13 85 42 41

Intel C/C++ float 14 91 64 70
17.0 int 13 92 62 65

short 70 99 94 96
double 17 75 52 60

GCC C/C++ float 16 99 71 73
6.3.0 int 13 91 67 70

short 13 96 80 85
double 17 79 37 28

LLVM/Clang float 21 99 62 59
3.9.1 int 26 77 50 52

short 46 99 92 96
double 11 93 48 39

PGI C/C++ float 15 96 60 58
16.10 int 10 96 52 54

short 52 99 92 96

5 Conclusion

In this work we studied auto-vectorizing capabilities of modern optimizing
compilers Intel C/C++ Compiler, GCC C/C++, LLVM/Clang, PGI C/C++ on
the Intel 64 and Intel Xeon Phi architectures. Our study shows that the compil-
ers evaluated could vectorize 39-77 % of the total number of loops in the ETSVC
package. The best results were shown by the Intel C/C++ Compiler, and the
worst ones – by the LLVM/Clang compiler. The compilers failed to vectorize
loops containing conditional and unconditional branches, function calls, induc-
tion variables, variable loop bounds and iteration count, as well as such idioms as
1st or 2nd order recurrences, search loops and loop rerolling. We analyzed and

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

65

proposed transformations for the loops that compilers failed to vectorize. Af-
ter applying proposed transformations loops was successfully auto-vectorized by
all compilers. The most part of the transformations based on loop interchange,
fission and distribution.

We estimated the CPU energy consumption for execution of vectorized loops
against their scalar versions. The experiments show that increasing the number
of array elements which can be loaded into a vector register (due to decreasing
the size of data type) results in decreasing the CPU energy consumption.

The future work will consist of evaluation and development of vectorizing
methods (polyhedral model) for the obtained class of challenging loops, applica-
bility analysis of JIT compilation [9] and profile-guided optimization.

References

1. Maleki, S., Gao, Ya. Garzarán, M.J., Wong, T., Padua, D.A.: An Evaluation of
Vectorizing Compilers. Proc. of the Int. Conf. on Parallel Architectures and Com-
pilation Techniques, 372–382 (2011)

2. Extended Test Suite for Vectorizing Compilers. URL:
http://polaris.cs.uiuc.edu/~maleki1/TSVC.tar.gz

3. Callahan, D., Dongarra, J., Levine, D.: Vectorizing Compilers: A Test Suite and
Results. Proc. of the ACM/IEEE Conf. on Supercomputing, 98–105 (1988)

4. Levine, D., Callahan, D., Dongarra, J.: A Comparative Study of Automatic Vec-
torizing Compilers. Journal of Parallel Computing. Vol. 17, 1223–1244 (1991)

5. Konsor, P.: Avoiding AVX-SSE Transition Penalties. URL:
https://software.intel.com/en-us/articles/avoiding-avx-sse-transition-
penalties

6. Jibaja, I., Jensen, P., Hu, N., Haghighat, M., McCutchan, J., Gohman, D., Black-
burn, S., McKinley, K.: Vector Parallelism in JavaScript: Language and Compiler
Support for SIMD. Proc. of the Int. Conf. on Parallel Architecture and Compilation
Techniques, 407–418 (2015)

7. Program Vectorization: Theory, Methods, Implementation (1991)
8. Metzger, R.C., Wen, Zh.: Automatic Algorithm Recognition and Replacement: A

New Approach to Program Optimization (2000)
9. Rohou, E., Williams, K., Yuste, D.: Vectorization Technology To Improve Inter-

preter Performance. ACM Trans. on Architecture and Code Optimization, 9(4),
26:1-26:22 (2013)

Acknowledgement.This work is supported by Russian Foundation for Basic Re-
search (projects 16-07-00992, 15-07-00653).

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

66

