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Abstract. A dynamical model of continuously variable transmission
(CVT) is considered. The model is described by ordinary differential
equations (ODE) of motion with about 1800 generalized coordinates,
and the same number of generalized speeds. Despite the low dimension
of the model, the times of numerical simulations of global dynamics are
high due to the properties of the system, namely its stiffness. This work
presents our activities aimed on the reduction of simulation time. Two
approaches are covered. The first one is to parallelize the code computing
ODE right-hand side using OpenMP. The other one is to find or develop
a faster numerical integration method. The paper presents results of per-
formance tests of the parallelized algorithm on various computer systems
and describes scalability problems related to peculiarities of the NUMA
architecture. The second approach is illustrated by the results of appli-
cation of several explicit and implicit numerical methods.

Keywords: Dynamics simulation · Initial value problem · Numerical
integration · Parallel algorithm

1 Introduction

In this paper we consider numerical simulations of global dynamics for a model
of continuously variable transmission (CVT).

Mathematical model of CVT has been obtained in the framework of La-
grangian mechanics and contains about 1800 generalized coordinates, plus the
same number of generalized speeds, so the total problem dimension is about 3600.
To numerically simulate dynamics, one has to solve an initial value problem for
ordinary differential equations (ODE).

Taking into account today’s sizes of numerical problems solved in the fields
of structural mechanics, computational fluid dynamics, and others, we have to
state that our problem has a low dimension. Nevertheless, simulation running
times are high: sequential code takes several hours of CPU time to simulate
one second of real time. Speeding up simulations is important since it enables
user to apply new analysis types, such as optimization, based on global dynamics
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simulations. Therefore, a significant speedup factor is highly desired for practical
applications. To achieve this goal, we use two approaches.

First of all, it is possible to parallelize the code implementing the numeri-
cal simulation, aiming on modern multi-core or hybrid hardware architectures.
However, the scalability of parallelization is very limited due to low dimension
of the problem and the heterogeneity of the model.

The paper is organized as follows. Section 2 presents an overview of the
model. Section 3 discusses current results of OpenMP-based parallelization of the
code. Section 4 illustrates the behavior of various numerical integration methods
applied to the problem of CVT dynamics. Section 5 provides a summary of the
results obtained and outlines future work.

2 CVT Model Overview
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Fig. 1. CVT model general view

The model of CVT includes two elastic shafts, the input and the output one,
on nonlinearly elastic supports. There are two pulleys on each shaft, one mo-
tionless and one moving (Figure 1). The pulleys have toroidal (almost conical)
contact surfaces. There is a chain consisting of rocker pins and plates (Figure 2).
Each pin has two halves that roll over each other during chain motion. End sur-
faces of pin halves are in contact with the pulleys. The application of clamping
forces to pulleys leads to certain chain configuration such that pins are at certain
contact radius at each pulley set; the gear ratio can be changed by shifting the
moving pulleys along the shafts. The torque is transmitted due to the friction
forces at pin-pulley contact points. Mathematical models of CVT parts for global
dynamics simulation have to be as simple as possible, while being able to corre-
spond to the reality good enough and represent stressed and deformed state in
individual elements, such as pins and links. Therefore, CVT shafts, rocker pins,
and plates are modeled as elastic bodies. To describe the state of CVT chain,
there are 21 generalized coordinates per link: 10 for each pin half (at each end of
pin half axis, there are three coordinates determining its position and two angles
determining its small slope; rotation of a pin half about the axis is determined
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Fig. 2. CVT chain
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Fig. 3. CVT chain generalized coordinates

by the positions of the neighboring pins) and one to determine the position of
pack of plates along pin axis (see Figure 3). Those coordinates fully determine
the deformed state of each pin half and each plate in our model of CVT chain.

There are many contact interactions in the CVT model: first of all, we have
pin-pulley contact; there are two more types of contact, namely the interactions
between pin halves and between a pins and plates (Figure 4).

pin-pulley pin-plate pin-pin

Fig. 4. Types of contact interaction in CVT

Fig. 5. Friction law for pin-pulley contact Fig. 6. Pin-pulley contact forces

Special attention should be paid to the contact interaction between pins and
pulleys because the torque is transmitted solely due to the friction forces at
pin-pulley contact points. The model of contact interaction is physically very
simple: for each end surface of a pin half, the interaction is localized at one
point; in that point, normal reaction force N and tangential friction force R are
applied to pin half, and the opposite forces are applied to the pulley (Figure 6).
The elastic normal reaction force is computed according to the Hertz’ theory [1];
the contact deformation is assumed to be the depth of mutual penetration of
contact surfaces, which remain rigid. The friction force is proportional to the
normal reaction magnitude and the friction coefficient f . The latter is assumed
to be a function of relative tangential speed v, and the dependency corresponds
to the Coulomb friction at speeds higher than v0 (a constant parameter), and
to the linearly viscous friction at speeds less than v0 (Figure 5), so there is no
sticking at contact point. The accepted friction law can be interpreted as a kind
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of regularization of the Coulomb dry friction; the value of v0 is quite small, which
is a source of numerical stiffness of resulting ODEs.

To resolve contact point kinematics, contact surfaces are locally approximaed
with quadratic functions, which allows to determine the right position of con-
tact point on pin half end surface. This is important because the contact point
positions ultimately determine the deformed state of pins and plates.

The model of CVT is described in more detail in [2].
Differential equations of motion for the CVT model are obtained in the frame-

work of Lagrangian mechanics, so they have the following form:

d

dt

∂L

∂q̇k
− ∂L

∂qk
= Q̃k, k = 1, . . . , n, (1)

where t is the time, qk are generalized coordinates, L is the Lagrangian, Q̃k

are non-potential applied generalized forces, and n is the number of degrees of
freedom.

3 Parallelization With OpenMP

Initially CVT simulation application was rather complex sequential code written
in C++ that is why OpenMP was treated as preferable technology of paralleliza-
tion. OpenMP’s important advantage is its relative simplicity when it is applied
to existing sequential code. Of course, it does not exclude abilities of the code
restyling if necessary.

Due to the problem pecularities the most obvious way of introduction of
parallel computing is the parallelization of each step of numerical integration
procedure of differential equations of motion. As one can see in Figure 7 most
of the time of integration step in sequential application is spent on calculation
of the right-hand side of the system of ODEs and foremost for the chain forces
calculation, contact forces and time-dependent inertia matrix evaluation and
factorization. So these fragments are to be parallelized first.

Current work represents results of parallelization of chain and contact forces
evaluation. Due to the chain’s periodicity the pins and the links of the chain are
natural candidates to parallelization cells. These approaches to the cell defini-
tion are both used now, depending on the force being calculated. Therefore the
chain forces calculation block is organized as a sequence of two parallel loops
(pragma omp for) with static scheduling across the links and pins respectively,
combined in common parallel section (pragma omp parallel). For example, the
link-based loop contains evaluation of the forces of the link plates deformation
and elastic and damping forces of pin halves deformation. At the other hand,
the pin-based loop contains calculation of pin halves interaction of the same
pin, such as pin halves contact and friction forces. It also contains evaluation of
damping forces in joints.

As it has been mentioned above, the problem has a low dimension so it is pos-
sible to use thread-local buffers for the vector of generalized forces of the chain.
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Due to usage of thread-local buffers OpenMP threads require few synchroniza-
tion and the procedure of chain force calculation can be scaled well. But this
approach has drawback too. The buffers should be initialized with zeros before
each forces calculation takes place and also the results should be gathered into
common forces vector after it. In the worst case these steps can not be scaled at
all, because the amount of arithmetical operations per thread does not depend
on the thread count. Of course, it is worth taking into account that the count of
non-zero elements in each thread-local buffer decreases when the thread count
increases and, namely, has an order of N/n, where N is the length of the vector
of the forces of the chain and n is the count of threads.

Fig. 7. CPU time consumption in CVT simulation. Sequential code

Therefore, the sequence of chain force calculation at each simulation time
point consists of the next steps: thread-local buffers initialization, chain force
calculation, gathering of the thread-local results into common force vector. All
the steps are being executed in parallel inside pragma omp parallel block.

The results of simulation of the same CVT model are presented in Figure 8
and 9. The simulation is performed on Tesla computer of Computer Technologies
in Engineering dept. (CTM). It consists of 2 NUMA nodes and its hardware
and software parameters are presented in Table 1. CPU affinity was managed
with environment variable GOMP_CPU_AFFINITY so that when n ≤ 6 only one
NUMA node is in use. And only when n > 6 the cores of the second node are
used. Therefore, the influence of non-uniformity of memory access in NUMA
architecture becomes more explicit in this case. The values of Y axis of Figure 8

Table 1. Hardware parameters and OS/GCC versions of computers used in simulations

Tesla Tornado

Cores per socket 6 14
NUMA nodes 2 2
CPUs Intel Xeon X5660 2.80GHz Intel Xeon E5-2697 v3 2.60GHz
Linux Ubuntu 12.04.05 LTS CentOS Linux release 7.0.1406 (Core)
GCC version 4.6.3 4.8.2
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Fig. 8. CPU time
Fig. 9. Relative speedup, chain forces,
Tesla

is time and the X axis shows number of threads. The data of the curves in
the Figure 8, refered as “CPU time” is calculated in the following way. Let

us denote as T
(init)
i,t , T

(calc)
i,t and T

(g)
i,t durations of buffer initialization, chain

force calculation and gathering respectively, measured in i-th thread with help
of omp_get_wtime function at simulation time moment t. Then the data points
of Buffer initialization/gathering and Chain Force calculation curves in Figure 8
are evaluated with the formulas:

T1 =
∑
t

n∑
i=1

(
T

(init)
i,t + T

(g)
i,t

)
, T2 =

∑
t

n∑
i=1

T
(calc)
i,t (2)

and represent overall amount of time spent in all threads for buffers initial-
ization/gathering and forces calculation respectively over all simulation steps.
This chart demonstrates scalability of the code: in ideal case both curves should
be straight horizontal lines, which means that there are no extra CPU time
consumption when number of threads grows. One can see that the time of ini-
tialization/gathering grows faster than the time of the forces calculation and it
will degrade efficiency of the code when the number of threads becomes large.
But contribution of initialization/gathering is relatively small in the interval of
thread numbers considered from 1 to 12.

The values shown in Figure 8 do not take into account time that has been
spent on parallel section creation/closing (pragma omp parallel block creation).
This fraction can be significant, as it is shown in Figure 9. The speeding up
of chain forces parallel calculation with respect to single-thread case is pre-
sented there. The Y axis contains ratios of calculation time at 1 core to cal-
culation time at n cores and X axis is the numbers of cores. Both curves re-
fer to the same simulation but use time evaluated in the different way. The
time used in curve ChainForceTotal evaluation takes into account time con-
sumed on omp parallel section. This time has been measured as a difference of
omp_get_wtime calls after and before omp parallel section, therefore it shows
real time of calculation. The time used in curve loops evaluation is the sum of
curves 1 and 2 from Figure 8 divided by corresponding number of threads and
characterizes calculation time with omp parallel excluded. One can see that
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the difference between these curves becomes especially significant when both
NUMA nodes are involved (n > 6).

This CVT configuration has been also simulated on another machine de-
scribed in the second column of the Table 1. This is two nodes of computational
cluster “Polytechnic RSK Tornado” of Supercomputer Center “Polytechnic” of
SPbPU. Further it is referred as Tornado. Unlike the simulation on Tesla this
computation does not use explicit thread binding with GOMP_CPU_AFFINITY vari-
able, so the system assigns threads to cores implicitly.

Figure 10 represents chart analogous to Figure 9: relative speed up in depen-
dency on the number of threads. The curve Tesla is the same as ChainForceTotal
in Figure 9, i. e., relative speedup of chain forces calculation on Tesla. Tornado
curve is analogous result obtained at Tornado. One can see that in the second
case the scalability is much worse and there is no speed up since the level of
11–12 threads is reached. This dependency on architecture of hardware used is
subject to future investigation.

Fig. 10. Relative speedup, chain forces Fig. 11. Relative speedup, contact forces

The calculation of contact forces between chain and pulleys takes place in
a separate parallel block and because it is being performed faster relatively to
chain forces calculation, the contribution of parallel section creation/closing in
this case is more significant. Contact forces calculations on both machines are
presented in Figure 11. Meanings of the curves are the same as in Figure 10 with
respective replacement of “chain forces” with “contact forces”. One can see the
loss of performance on Tornado with the number of threads growing. Code of
contact forces calculation does not contain explicit synchronization structures,
therefore the genesis of such slowing down is not obvious and requires additional
investigation. Measuring of time of contact forces calculation without taking
into account parallel section creation/closing shows much better scalability so
the problem might be in rather significant contribution of pragma omp parallel

code.

4 Investigation of Numerical Methods

Production version of the CVT simulation code has always been using the
Runge–Kutta numerical integration scheme of fourth order (RK4) [3] to solve
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the initial value problem of CVT dynamics. It is known that the RK4 scheme, as
well as other explicit numerical integration schemes, have a step size limitation
due to the stability requirement: in general, for a linear system the value hλ,
where h is the step size and λ is an eigenvalue of ODE right-hand side Jacobian,
must belong to the stability region, which for an explicit scheme is always a
bounded area in the complex plane; for nonlinear ODEs, it is usually the same.

The step size used for CVT numerical simulations with the RK4 scheme has
to be quite small, between 10−8 and 10−7 due to the above mentioned stability
limitation. As a consequence, CPU time required for a simulation is high. The
analysis of ODE system Jacobian has shown that without friction, maximum
eigenvalue magnitude is about 106 and corresponds to pin axial vibrations; due
to the friction, there are also real negative eigenvalues up to −108. Therefore,
the ODE system can be considered mildly stiff.

While the actual goal of the entire investigation is to decrease CPU time of
simulations, in this section we try to achieve a different goal: find a method that
can be applied with significantly larger step sizes than those currently in use.
Once such a method is found, its performance has to be further optimized.

Sections below illustrate our attempts to apply different numerical methods
to CVT dynamics simulation; we cover explicit methods (sec. 4.2), semi-implicit
methods (sec. 4.3), and one completely implicit method (sec. 4.4).

4.1 Numerical Experiment Setup

For each numerical integration scheme, two tests have been done. In the first
test, the dependency of step local error on the step size is investigated. The error
is computed simply by comparison with the “exact” solution obtained with a
very small step size of 2 · 10−9 using the RK4 scheme. The test can be used, in
particular, to verify scheme order of accuracy. In the second test, a dynamics
simulation is performed during 0.005 second of real time; a sample history curve
is obtained (namely, the axial force in a pin half entering a pulley set) as an
evident indicator of the acceptability of numerical results.

To illustrate the impact of nonsmoothness of friction law on the accuracy of
numerical results, we also included the results of testing for smooth friction law
f = f0 arctan v

v0f0
, where f0 is the saturation value of friction coefficient.

Sections below present the results of first test for the original and smoothed
friction law, and the results of second test for both friction laws and for selected
step sizes.

4.2 Explicit Methods

Explicit methods covered in this subsection are the following classical ones.

– Three embedded Dormand–Prince schemes with step size control [3]. The
step size control was disabled in test simulation. An embedded scheme pro-
vides two solutions of different orders of accuracy at each step, which can
be used to control the step size; those orders are encoded in the name of the
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scheme. The three schemes are DOPRI45 (orders 4, 5), DOPRI56 (orders
5, 6), and DOPRI78 (orders 7,8).

– Gragg–Bulirsch–Stoer method (GBS) with smoothing step [3]. It is an ex-
trapolation method with the symmetric Gragg’s scheme used as the reference
scheme. We tried this method with a fixed number of extrapolation stages
(2, 4, 6) and the harmonic step size sequence (the schemes are referred to as
GBS2, GBS4, GBS6 below).

– Extrapolated explicit Euler scheme, with 2 extrapolation stages and the
harmonic step size sequence (referred to as Euler-x2 below).
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Fig. 12. Step local error for explicit methods

The step local error test (Figure 12) shows that the local error is generally less
for smooth friction law; further data processing also indicates that the local error
behaves according to scheme order only in a limited step size ranges, different
for different schemes; some schemes (DOPRI45, DOPRI78, GBS4, GBS6) do not
show the expected behavior at all, although they do in tests with simple ODEs.

The dynamics test (Figure 13) confirms that all explicit schemes considered
have severe step size limitation that is about 10−7 for nonsmooth friction law
and schemes GBS2, DOPRI56, and is less for other schemes; for smooth friction
law, the limit is higher yet it is less than 5 · 10−7. We can also conclude that low
order schemes (2–4) are preferrable in model with non-smooth friction low; in
model with smooth friction law, higher order schemes may be preferrable.

4.3 Semi-implicit Methods

There was a hope that a W-method [4] is capable of producing acceptable numer-
ical solution at steps much greater than 10−7, because those methods generally
have better stability properties than explicit ones. However, in our case all W-
methods tested failed for some reason, though they worked good in tests with
simple ODEs.
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Fig. 13. Sample curves for explicit methods

The schemes considered in this subsection are W24 [4] and the W1 method
extrapolated according to the Richardson’s procedure [3]. The W1 scheme is as
follows:

xk+1 = xk + hf(tk,xk) + hdA(xk+1 − xk), (3)

where x is the numerical solution vector, the subscript k denotes the step num-
ber, h is the step size, t is the time, f is the ODE right-hand side vector, d is
a parameter (usually between 0 and 1), and A is the matrix approximating the
ODE system Jacobian Df/Dx. W-methods are attractive compared to Rosen-
brock methods [5] due to the ability to keep A constant during many time steps,
thus eliminating the necessity to compute it and factorize the matrix I − hdA
at each time step.

Figure 14 shows that all schemes tested have much greater local step error
than explicit schemes. The expected order of schemes is observed at step sizes
less than 10−7; the higher the order, the less the range in which scheme order is
obeyed.

Figure 15 shows that all W-method schemes produce inacceptable solution
even at step 10−7. We have to conclude that they didn’t work in our case.

4.4 Trapezoidal Rule Method

Among many implicit methods, we chose the trapezoidal rule (2-nd order scheme):

xk+1 = xk +
h

2
[f(tk,xk) + f(tk + h,xk+1)], (4)
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Fig. 14. Step local error for semi-implicit W-methods
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Fig. 15. Sample curves for W-methods, h = 10−7

Figure 16 shows the step local error for the trapezoidal rule. Notice that it
is less than for any other scheme tested at steps greater than 4 · 10−7.

Sample curve shown in Figure 17 is obtained at step size 2 · 10−6 and practi-
cally coincides with the exact solution. It is possible to use larger step sizes, but
only with step size control because the Newton’s method used at a time step
may fail to converge.

5 Conclusions and Future Work

The paper considers two approaches for speeding up the numerical integration
of about 3600 ODEs of CVT dynamics. The ODE right-hand side is quite nu-
merically expensive, and the ODE system is mildly stiff.

The first approach is to parallelize the computation of ODE right-hand side.
Usage of pins and chain links as cells of parallelization allows to calculate forces
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Fig. 17. Sample curves for trapezoidal
rule, h = 2 · 10−6, nonsmooth friction law

in the chain in natural way. But scalability of present implementation strongly
depends on parameters of machine used and may be rather poor. The cause of
it is the goal of future investigation.

The second approach is to find a numerical method faster than RK4 currently
used in the production version of CVT software. The investigation has shown
that traditional explicit numerical integration schemes and W-methods don’t
work in our case. Implicit methods give good results; however, to make those
methods run faster than RK4, additional efforts are required: for example, ODE
right-hand side Jacobian could be computed much faster but it requires tedious
programming (the idea is to combine the approach presented in [6] with the
decomposition of the ODE right-hand side into a sum and providing faster code
for the Jacobian of contact forces).

Future plans include performance improvements for implicit schemes. In ad-
dition, we are planning to test so called stabilized explicit Runge–Kutta methods
because they have not been covered in this research, while seem to be quite apro-
priate for the case of Jacobian eigenvalues that we really have.
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