Cynepromnwsromepruie Onu 6 Poccuu 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

Architecture of Middleware to Provide
the Multiscale Modelling Using Coupling
Templates

Alexey Liniov', Valentina Kustikova!, Alexander Sysoyev', Maxim Zhiltsov!,
Igor Polyakov', Denis Nasonov?, and Nikolay Butakov?

! Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
2 ITMO University, St.Petersburg, Russia
alin@unn.ru™, valentina.kustikova@gmail.com, sysoyev@vmk.unn.ru,
zhiltsov.max35@gmail.com, polykovio@mail.ru, denis.nasonov@gmail.com,
alipoov.nb@gmail.com

Abstract. The Multiscale Modelling and Simulation approach is a pow-
erful methodological way to identify sub-models and classify their inter-
action. The execution order and interaction of computational modules
are described in the form of workflow. This workflow can be executed as
a single HPC cluster job if there is a middleware which schedule mod-
ules execution on allocated resources. We present an architecture of such
middleware called Wrapper which provides internal module execution
scheduling, interconnection functionality, module migration between al-
located resources and storing intermediate state of computations. This
middleware is compatible with CLAVIRE (CLoud Applications VIRtual

Environment) platform and acts as its execution mechanism.
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1 Introduction

By the moment a great number of high-performance purpose-oriented software
has been developed to solve problems in different application fields. Most com-
putational modules are developed by applied specialists using various numerical
models, programming languages and parallel programming technologies. In most
cases only source code and binaries are available. Joint usage of such modules
requires integration of data formats, used technologies and platforms. First of
all it is necessary to determine principles of combined use of different models im-
plemented in such modules. However, the employment of such modules is rather
difficult even in cases when interaction with the code developer is possible.
One of the approaches progressing in the field of composite applications de-
scription is Multiscale Modelling [Tl2], presenting templates to combine compu-
tational modules. Multiscale Modelling offers several standard methods apply-
ing some models of different time and spatial scales: Extreme Scale Computing
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(ES), Hierarchical Multiscale Method of Computing (HMM), Replica Comput-
ing (RC) [3]. It defines the way to identify sub-models, classify the sub-model
interactions as full or partial overlap of scales and specify the relation between
the sub-models that could be represented as a task graph or workflow.

The development of the first multiscale modeling environments is carried
out in specific applied fields. Among such environments, one can single out the
Computational Materials Design Facility (CMDF) [4] that allows multi-scale
multi-paradigm simulations of complex materials phenomena. This framework
is based on a generic scripting environment, with the objective to enable sim-
ple setup of complex multi-scale simulation tasks. Interfaces between different
modules, along with a central data structure allow straightforward communica-
tion between different simulation engines. CMDF uses the Python programming
language to control the computational flow between disparate processing cores
written in compiled languages (C/C++ /Fortran) that carry out physicochemical
calculations for multiscale/multiparadigm under a unified data model.

Morpheus [5] is another example of multiscale modeling environment. It al-
lows the simulation and integration of cell-based models with ordinary differ-
ential equations and reaction-diffusion systems. It allows rapid development of
multiscale models in biological terms and mathematical expressions rather than
programming code. Morpheus separates modeling from numerical implementa-
tion by using a declarative domain-specific markup language.

Also, note Multiphysics Software Environment (MUSE) [6] for multiscale
modeling in astrophysics. MUSE facilitates the coupling of existing codes written
in different languages by providing inter-language tools and by specifying an
interface between each module and the framework that represents a balance
between generality and computational efficiency. MUSE has layered architecture.
The top layer (flow control) is connected to the middle (interface layer) which
controls the command structure for the individual applications. These parts and
the underlying interfaces are written in Python, whereas the applications can
be written in any language. The only constraint that code must meet to be
wrapped as a module is that it is written in a programming language with a
foreign function (C/C++, Fortran, C#, Java, Haskel etc.).

Later, ideas are formulated about the need to develop a universal environ-
ment that provides the possibility of carrying out a multiscale experiment, re-
gardless of the specifics of the applied field. In this connection, the concept of
a multiscale model is formalized and their classification is introduced [7]. Based
on this classification the Multiscale Coupling Library and Environment (MUS-
CLE) [7] and its improved version MUSCLE 2 [§] are implemented. MUSCLE 2
is a component-based modeling tool inspired by the multiscale modeling and
simulation framework, with an easy-to-use API which supports Java, C++, C,
and Fortran. It assumes that a multiscale model is split into multiple coupled sin-
gle scale submodels [7]. As a result, each submodel has inputs and outputs that
can be coupled in a general way. Within one simulation, one submodel could for
instance use hundreds of cores on a supercomputer, whereas another may have
to make use of GPU-computing, and yet another needs high I/O performance.
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Each submodel is managed by its own instance controller. The controller is an
intermediary for any messages that a submodel sends or receives [§].

The proposed environment Wrapper is based on the same theoretical foun-
dations of multiscale modeling as MUSCLE 2 [§]. In contrast to MUSCLE 2
we attempt to organize centralized submodels scheduling in accordance with
statistics on its resource usage. To utilize computational resources efficiently one
need to analyze parameters and statistical data related to utilization of hardware
resources, execution of individual computational modules and composite applica-
tion taken as a whole. In case of specific modules the relatively simple algorithms
can be used [9T0], but provided huge computational facilities are implemented
and complex applications are executed we shall use the more comprehensive ap-
proaches, such as Knowledge-Based Resource Management [I1]. The middleware
which we develop, is oriented to coupling with CLAVIRE (CLoud Applications
VIRtual Environment) [12] which allows building composite applications using
domain specific software available within distributed environment. CLAVIRE
builds the workflow, reserve resources of high-performance computing system
and launches Wrapper middleware in allocated resources.

2 Purpose of Wrapper Middleware

Wrapper middleware is a MPI program. Wrapper is launched in computational

cluster by CLAVIRE scheduler, assumed as being executed in the node external

towards the computational cluster. CLAVIRE scheduler ensures the delivery

of input data to the cluster, the analysis of cluster resources and features of

workflow to be executed, job formation for the cluster management system,

launching Wrapper, as well as download the output data from the cluster.
Wrapper provides the following functionality.

— Collecting information about allocated resources of computational cluster.

— Dynamically assigning of computational modules to cluster nodes (with pos-
sibility of migration).

— Launching workflow execution.

Data transmission between computational modules.

Completing the workflow execution and release of computational cluster re-

sources.

Wrapper architecture makes possible to schedule the execution of compu-
tational modules within the allocated resources, however the scheduler is not
its subsystem. Scheduling algorithm implements by default static allocation of
computational modules on cluster nodes, but we are going to provide integration
with adapted version of CLAVIRE scheduler.

Fig.[I]illustrates the structural diagram of subsystems interacting with Wrap-
per middleware.
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Fig. 1. Interacting subsystems: structural diagram

3 The Workflow Model

3.1 Introduction to the Workflow Model

Wrapper is oriented to use execution patterns presented as a workflow. The
workflow contains information about composition of computational modules,
possible sets of input as well as output data. The input data of computational
module can be built based on output data of other modules or received from
the scheduler (such option is required to launch the workflow execution). Fig.
shows the example of workflow, consisting of the scheduler (S), 3 computational
modules (CM-1, CM-2, CM-3) and description of relations between them. In this
example the computational module can be executed if all input data has been
received.

Ffin-1] In-2 [In-3
Computational
module CM-1

Out-1{Out-2[Out-3

N\

Size | Data BigInputArray
Computational Computational
module CM-2 module CM-3

Data Arrl | Arr2

S T

Fig. 2. Workflow: example. “S” is a scheduler. “CM-1”7, “CM-2”, “CM-3” are computa-
tional modules. “F” and “In-1, In-2, In-3” are the sets of inputs of the module “CM-17;
“Out-1, Out-2, Out-3” is a set of outputs of the module “CM-1". “Size, Data” is a set
of inputs of the “CM-2”; “Data” is a set of outputs of the “CM-2". “BigIlnputArray”
is a set of inputs of the “CM-3”; “Arrl, Arr2” is a set of outputs of the “CM-3”
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3.2 Concept “Set of Inputs/Outputs”

“The set of inputs” is a set of input data of computational module (hereafter —
CM), sufficient to launch the module execution. Each CM input can be included
only into one set. The description of all possible sets of inputs for each CM is
represented in the workflow. On each cluster node Wrapper collects input data
for computational module assigned to this node; once any full set of inputs is
collected it is transmitted to computational module (or CM is launched with the
prepared set).

“The set of inputs/outputs” is required to ensure the integrity of CM in-
put data structure as well as to support the concept of “launching output” (see
below). Here we shall point out that empty output and absence of output are
completely different situations because an empty output can be used (and re-
quired) to form the set of inputs for another module.

The sets of inputs make it possible, using workflow, to describe the Multi-
scale Modelling templates including a number of integrated models (in time and
space); for example templates shown in Fig. [3| and Fig. 4| can be presented as
workflows on that figures.

?

F
// Model 1 // Model 2 Initialization
t=0 t=0 Out-1 [ Out-2
Initialization Initialization a—
while t < T while t < T ecer——t \
] ) Start[ Currentin Start[ Currentin
begin begin
Intermediate Intermediate CM Model 1 CM Model 2
observation observation
Make one iteration®] [™ Make one iteration Final [currentOUt FinallcurrentOUt
t=t +dt t=t +dt ; y] ]*
end end \ }
Final observation Final observation In-1 [ In-2
Results
aggregation

Fig. 3. The Multiscale Modelling with 2 models and integration in space: calculation
scheme and workflow. “CM Model 17, “CM Model 2” are computational modules
implementing “Model 1”7 and “Model 2” respectively. “F” and “Out-1, Out-2” are sets
of inputs and outputs of the Initialization module. “Start” and “CurrentIn” are sets
of inputs, “Final” and “CurrentOut” are sets of outputs of “CM Model 17 and “CM
Model 2”7. “In-1, In-2” is a set of inputs of the “Results aggregation” module

In both cases the execution starts after the scheduler sends the set of data
including one “S” output to the input of initialization module “F”. For this
module one set of inputs is assigned containing only “F” input; that is why once
this input received the execution of the initialization module will start and the
outputs will be formed sufficient to launch CM models (two in the first case
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Fig. 4. The Multiscale Modelling with 2 models and integration in time: calculation
scheme and workflow. “CM Model 17, “CM Model 2” are computational modules
implementing “Model 1”7 and “Model 2”7 respectively. “F” and “Start-Out” are sets of
inputs and outputs of the “Initialization” module. “Start” and “CurrentIn” are sets of
inputs, “Final” and “CurrentOut” are sets of outputs of “CM Model 1”. “CurrentIn”
and “CurrentOut” are sets of input and outputs of “CM Model 2”. “Final-In” is a set
of inputs of the “Results aggregation” module

and one in the second case). For example in the first case two outputs will be
formed launching CMs for models 1 and 2. Thereafter CM for models 1 and 2
will be executed in a parallel way, in each iteration sending each other input sets
sufficient for their next iteration. After the modeling is completed CMs form
resulting data and transmit them to the module of result aggregation, which
performs the final processing and completes the workflow execution.

Thus, workflow with sets of inputs can be implemented to organize the Mul-
tiscale computations based on Extreme Scale Computing (ES).

3.3 Workflow Modification. The “Module Instance” Concept

Usage of Multiscale computation template Hierarchical Multiscale Computing
(HMM) implies the execution of many launches for CM model of less scale in
one computation step of the model of larger scale. The number of launches for
CM model of less scale can be unknown in advance and vary from iteration to
iteration; and for efficient computations its necessary to parallel launch several
copies of less-scaled CM model on different cluster nodes.

To support the HMM pattern the concepts “launching set of outputs”, “mod-
ule instance”, “aggregating set of inputs” shall be introduced into workflow.

— “Module instance” is a computational module launched for processing one

or several sets of inputs. Each module is identified by the pair (module
identifier, instance identifier). Wrapper uses these pairs as CM addresses.
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— “Launching set of outputs” (LSO) means that one or several module in-
stances which receive the input from this set can be launched. The number
of instances is determined by the Wrapper scheduler which, at the moment
of transmission of regular output set, determines if the outputs included
into the set will be sent to the already launched CM instances or additional
instances will be launched and the data shall be sent to them. A unique
identifier is assigned to each LSO and it will be inherited by the output data
of following modules. LSO are sent in blocks of arbitrary size, thereby simul-
taneous sending is not compulsory. As soon as the numbers of the first and
last LSO in the block are known they are sent to the corresponding modules
with aggregating set of input data.

— “Aggregating set of inputs” is used to collect several outputs of several in-
stances of one CM into one input of other CM. In the workflow “Aggregating
set of inputs” is obviously linked with “Launching set of outputs” which gen-
erates the parallel processing followed by aggregation. CM with “Launching
set of outputs” for each block of outputs sent for processing shall obviously
transmit numbers of the first and the last sets (corresponding outputs and
inputs are automatically created in the sets of inputs/outputs) to all mod-
ules with aggregating input. The block of sets of inputs is transmitted to the
module only after receiving all sets according to the first and last numbers.

Fig. [5] shows the workflow example using HMM template.

?

F
Initialization
Start-Out
o
Start §*In(CM-1,0ut) Microln
CM Model 1 CM Model 2
(CM-1) (CM-2)
Final | *Out MicroOut
| [}
Y
Final-In
Finalization

Fig. 5. Workflow for the Multiscale Modelling using Hierarchical Multiscale Computing
(HMM). “CM Model 1 (CM-1)”, “CM Model 2 (CM-2)” are computational modules.
“F” and “Start-Out” are sets of inputs and outputs of the “Initialization” module.
“Start” and “*In(CM-1, Out)” are sets of inputs of the “CM-17. “Final” and “*Out”
are sets of outputs of “CM-17. “Microln” and “MicroOut” are a sets of inputs and
outputs of the “CM-2”. “Final-In” is a set of inputs of “Finalization” module

“CM Model 1” has one launching set of outputs which includes “*Out” out-
put. Correspondingly, the arbitrary number of instances of “CM Model 2” can
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be launched. “CM Model 1”7 has also one aggregating set of inputs “*In(CM-
1,0ut)”, where input data “In” are aggregated according to the blocks of outputs
generated by the “Out” output of the same “CM Model 1”.

4 Wrapper Architecture

First of all lets introduce the interconnection diagram of CM (Fig. @

-
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Fig. 6. Wrapper and CMs interconnection diagram. Wrapper middleware is a MPI pro-
gram. Built-in scheduler is integrated into the Process with Rank 0. Another processes
provide launching of computational modules and their communication

S~—1

Adaptation of computational modules to execution with Wrapper can be
performed by the following methods.

1. Integration between computational module and Wrapper at source code
level: CM compiled and linked with a set of Wrapper functions providing the
transmission of commands and data using mechanism of unnamed pipes (in-
tegrated or built-in Wrapper proxy). The computational module is launched
one-time when the workflow execution starts, thereafter it is executed con-
stantly, receiving and transmitting messages through the unnamed pipes.

2. The computational module is developed using the set of Wrapper functions
which provide reading and parsing of input data and building the set of out-
put data. The computational module is launched every time when Wrapper
builds the full set of its input data (external Wrapper proxy). While launch-
ing the module 3 parameters are transmitted to it via environment variables:
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input file name, output file name, file name of the module state (the last pa-
rameter is used if the module shall save some data between iterations).

3. The computational module is compiled and operates independently receiv-
ing and transmitting input/output data using the standard input/output
(external Wrapper proxy). The computational module is also launched one-
time when the workflow execution starts and executed constantly, receiving
and transmitting messages through the redirected standard input/output.

In the first mode Wrapper proxy requires to know the command lines in order
to launch and stop the computational module. The computational module uses
a provided specific interface for reading the input data and saving the output
data.

The second mode is available only for computational modules in C and C++
programming languages. To integrate proxy into the computational module the
following shall be done:

— design the computational module in a specific way;

include the Wrapper proxy header files into CM source code;
create a proxy object in the computational module;

define the computation function to callback from proxy;

— launch proxy from the computational module.

The Wrapper structural diagram is shown in Fig. [7]
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Transport
Process ‘ Process ‘ Process |
LaunchL | Collector MessageSender | | MessageReceiver
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Proxy Proxy |

MessageReceiverl | MessageSender
]
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External module --------mmee’

Fig. 7. The Wrapper middleware structure
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Process contains components executed in MPI-process, Proxy contains com-
ponents executed in the built-in Proxy. Structural components has the following
purpose.

— ProcessQueue, ProxyQueue are message queues through which the interac-
tion of other components is performed.

— InterprocessCommunicator provides the data transmissions between Wrap-
per processes using MPI technology.

— ProcessCollector, ProxyCollector receive input data for the computational
modules and form the sets of inputs, distribute the sets of outputs and send
them to the receivers. Besides collectors receive information about module
migration. If collector does not prepare full set of inputs for module execution
then it transfers current set of inputs back to the message queue. After that,
InterprocessCommunicator sends data to the target computational module
which was migrated.

— ProcessMessageSender, ProcessMessageReceiver, ProxyMessageSender, Prox-
yMessageReceiver provide data transmission between Wrapper and the com-
putational modules with integrated Proxy.

— Launcher implements the launching of the computational modules.

— ProcessController, ProxyController manages allocation /release of other com-
ponents.

5 The Results of Experiments

5.1 Computational Infrastructure

We used UNN Lobachevsky supercomputer. Nodes of the Linux segment we used
have 2x Intel Sandy Bridge E5-2660 2.2 GHz processors (8 cores), 64 GB RAM,
QDR InfiniBand network. We employed the Intel MPI and Intel C++ Compiler
from the Intel Parallel Studio XE Cluster Edition 2017.

5.2 The Test Workflow

To perform the tests the following computational diagram has been used (see
Fig. [8 hereafter “test workflow”).

Modules 0—4 do not perform any computations, they only receive the input
data and send the output data. Module 0 sends the data block of the fixed size to
Module 1, Module 1 sends the copies of this block to Modules 2 and 3, Modules
2 and 3 send an empty message to Module 0.

5.3 Results

The performance of the test workflow has been estimated in terms of data trans-
fer rate for two mechanism of data transmission to computational modules:

— using of external wrapper proxy and data transmission through the file;
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Fig. 8. The test computational diagram

— using proxy, integrated with the computational module.

During tests several iterations of workflow has been performed and average
time for one iteration has been calculated. Data blocks from 10 bytes to 1 billion
bytes has been used. Table [I] and Fig. [0 show the average execution time values
for one iteration using data transmission through the file.

Table 1. Test workflow iteration times for external Wrapper proxy

# Block size (B) Average iteration time (s)
1 10 0.13

2 100 0.14

3 1 000 0.13

4 10 000 0.16

5 100 000 0.14

6 1 000 000 0.29

7 10 000 000 0.76

8 100 000 000 17.98

9 1 000 000 000 196.02

Test results show that the overhead for single iteration is approximately
constant and makes up about 0.15 s. The transfer time starts to have a value
only when the block size exceeds 1MB.

Table 2] and Fig. [I0]show the average execution time values for one iteration
using built-in Wrapper proxy and data transmission via unnamed pipes.

The overhead for one iteration is again constant and makes up about 0.05 s.
Switching from using an external proxy to a built-in one reduces the transfer time
of 1 GB data block from 196 s to 62 s. In general, the results of the experiment
show the advantage of using the built-in proxy, and acceptable performance.
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Fig. 9. The test workflow iteration times for external Wrapper proxy

Table 2. Test workflow iteration times for built-in Wrapper proxy

7# Block size (B) Average iteration time (s)
1 10 0.054
2 100 0.053
3 1 000 0.05
4 10 000 0.06
5 100 000 0.05
6 1 000 000 0.06
7 10 000 000 0.12
8 100 000 000 6.39
9 1 000 000 000 61.92

6 Application of Wrapper Middleware for “Restenosis”
Modeling

Within our study we have adopted “Restenosis” application (computation of
barrier reconstruction in blood vessels) in order to use the Wrapper middleware.
Original version uses 8 computational modules and MUSCLE library, provid-
ing modules launch and data exchange between them. Adaptation includes the
following stages to do.

1. Analyze launching methods of the computational modules.

2. Analyze data transmission workflow between the modules.

3. Analyze principles and mechanisms for implementation of interactions be-
tween modules using the MUSCLE library interface.

4. Develop “Restenosis” source code modifications which enable collecting and
saving the sets of inputs and outputs. Make test launches and save the data
sets (for further testing of adapted version).

5. Develop the set of Wrapper functions which implement reading and parsing
of inputs as well as building sets of Wrapper outputs in programming lan-
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Fig. 10. The test workflow iteration times for built-in Wrapper proxy

guages used in the computational modules of “Restenosis” application (C,
C++, Java).

6. Exclude the MUSCLE library from source code of the computational mod-
ules. Add Wrapper code.

7. Test the adapted computational modules.

8. Launch the adapted version of “Restenosis” using Wrapper middleware.

The adapted version of “Restenosis” on the test problem generates output
that coincides with the original version, and shows comparable performance.

7 Conclusion

The paper describes extensions to the workflow model which enables the ex-
ecution of composite tasks based on the Multiscale Modelling templates. The
developed architecture of Wrapper middleware provides combined usage of the
computational modules developed with different programming languages and
technologies. Migration of the computational modules between cluster nodes be-
comes possible as well. Performance tests show acceptable results. The use of
Wrapper in the modeling of “Restenosis” shows the possibility of using it for
solving applied problems. The authors continue to develop and plan further use
of Wrapper middleware.
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