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Abstract. In strongly coupled fluid-structure interaction simulations,
the fluid dynamics and solid dynamics problems are solved indepen-
dently on their own meshes. Therefore, it becomes necessary to inter-
polate physical properties (pressure, displacement) across two meshes.
In this paper, we propose the acceleration of the interpolation process
by using the matrix-free approach of the interpolation problem on GPU
based on radial basis function method. Also, we reduce the number of
equations of the system by using the adaptive algorithm of the choice of
the interpolation points.
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1 Introduction

There are several approaches used to simplify algorithms for the numerical solv-
ing of the Fluid-Structure Interaction (FSI) problem. These include the reduc-
tion of the problem dimension, the algorithms that accelerate the computations,
the analysis methods and the possibilities of using the properties of subtasks.
Consider the reduction computational costs when interpolating data between
non-matching meshes: reducing the data of interpolation; parallelization of al-
gorithms, taking into account the geometry of extended boundaries in axisym-
metric bodies.

Main interpolation methods on non-matching meshes for FSI simulations are
overviewed in [1,5]. We consider the one based on radial basis functions (RBF)
[2]. In this method, the coefficients of the interpolant are found from the system
of equations whose matrix is formed using a radial basis function. The choice
of the function determines the conditioning and density of the matrix, and as a
result, the computational complexity of solving the system of equations.

The advantages of the RBF interpolation are the following:

– It does not require mesh-connectivity information.
– It requires solving a sparse system of equations, especially with the compact

basis functions.
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– It can be efficiently parallelized.

This paper is structured as follows. In Section 2, we briefly describe the
RBF interpolation scheme for the FSI problem. In Section 3, we present new
approach of reducing the problem size, based on layer-by-layer mesh partitioning.
In Section 4, we describe a matrix-free solution of the interpolation problem on
GPU.

2 RBF interpolation for FSI problems

Let P d
Q−1

is d dimension space of polynomial no more than Q− 1 and p1, . . . , pq
be a basis in this space. The main idea of the RBF method is to find the required
interpolation function as a linear combination of the following functions:

w(xi) =

n
∑

j=1

αjφ(||xi − xj ||) +

q
∑

l=1

βlpl(xi), 1 ≤ i ≤ n , (1)

where q are additional degrees of freedom and the coefficients αi and the poly-
nomials pl(xi) satisfy the following conditions:

n
∑

j=1

αjpl(xj) = 0, 1 ≤ l ≤ q . (2)

The solution of the system exists and is unique if

p(xj) = 0, for all 1 ≤ j ≤ n and p ∈ P d
Q−1

valid p = 0 . (3)

The system of equations (1) - (3) is always solvable if φ is a positive-definite
radial basis function.

Let Ω be the domain with the given pressure pΩ . .The domain with the
required pressure is denoted by Φ. The pressure interpolation between the mesh
can be expressed in matrix form as follows:

[

WΩΩ PΩ

PT
Ω O

][

α

β

]

=

[

pΩ

0

]

or Aγ = b , (4)

here WΩΩ is nΩ × nΩ matrix, consisting of the elements φ( ||xiΩ − xjΩ || ), 1 ≤
i, j ≤ nΩ , PΩ is column matrix consisting of the elements

[

1 xiΩ
]

, α, β are the
coefficients of the interpolant; nΩ is the number of interpolation points of the
domain. The target pressure vector pΦ is obtained by matrix-vector product:

pΦ = [WΦΩPΦ]

[

α

β

]

, (5)

where WΦΩ is nΦ × nΩ matrix, consisting of the elements φ( ||xiΦ − xjΩ || ), 1 ≤
i ≤ nΦ, 1 ≤ j ≤ nΩ , nΦ is the number of interpolation points on the domain Φ,
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PΦ is column matrix
[

1 xiΦ
]

. The dimension of the matrices PΩ and PΦ depends
on the type of basis functions. For example, the dimension of the matrices for
global radial basis function Thin-Plate Spline is 3×nΩ and 3×nΦ, respectively.

Solving the system of the equations (4) is the most computationally expensive
part of the interpolation. In [3], it was shown that the choice of basis functions
affects both the quality of the interpolation and the solution time. The func-
tions that provide more accurate interpolation may lead to large solution time.
The computational cost can be optimized by (i) reducing the system and (ii)
parallelizing the steps of preconditioning and solving sparse/dense systems of
equations.

3 Reducing the size of the system of equations

In this section, we demonstrate the reducing the size of the system of equations
for the fluid-structure interaction of supersonic flow with a nozzle wall that has
a high geometric expansion ratio [11]. The boundary along which the computa-
tional data are interpolated is quite long and pressure is irregularly spaced along
the boundary Ω (nozzle wall). We address these issues in the layer-by-layer mesh
partitioning method proposed in our previous work [8]. The method provides a
conflict-free data access during parallel summation of the components of finite
element vectors in the shared memory of multi-core computing systems.

We divide the interface part ΓΩh = ∂Ωh of the mesh Ωh formed by the
cell faces that belong to the surface ΓΩ . To partition ΓΩh into layers, we use
the neighborhood criterion, where any two mesh cells are considered adjacent if
they have at least one common node.

The considered physical area and the computational mesh are symmetrical.
Therefore, the choice of the initial set of interpolation points is carried out in
accordance with the distribution of the layers. Here, there are two possibilities
for selecting layers: along the generatrix and along the directrix.

The mesh ΓΩh is the discrete description of the rotation surface ΓΩ with the
closed directrix. To form layers in parallel to the directrix ΓΩ (see Fig. 1 (b)) or
along the surface generatrix (see Fig. 1 (c)), we use the algorithm proposed in
[8].

The layer-by-layer partitioning is used to reduce the number of interpolation
points. To construct the interpolant, we choose those layers of the interface
surface which most accurately represent the distribution of interpolated data
(pressure). Fig. 1 shows the partitioning of the surface mesh into 150 layers.
The dark layers correspond to 15 layers involved in the pressure interpolation
(Fig. 1(b), (c)).

The quality of interpolation is compared for the local φ(||x||) = 1 − ||x||,

φ(||x||) = (1−||x||)2 and the global φ(||x||) = e−||x||2 , φ(||x||) = ||x||2 log ||x|| ba-
sis functions of Inverse Distance Weighting (IDW) [10], using different partitions
and the numbers of layers. The quality of pressure interpolation can be estimated
as the relative error computed by the ratio of the norms of the resultant forces
of pressure on the interface boundary.
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(a) (b) (c)

Fig. 1. (a) The interface boundary partitioned into 150 layers; (b) the partition into 15
layers parallel to the directrix; (c) the partition into 15 layers by the surface generatrix.

(a) (b) (c)

Fig. 2. The given pressure distribution at the boundary of the domain Ω (a); the
resulting pressure distribution (TPS) using 15 layers from 150 by radial partition (b)
and surface generatrix (c).

Table 1 shows the results for the pressure interpolation in parallel to the
directrix (Radial partitioning) and along the surface generators (Longitudinal
partitioning). In the second column (“all points”), we estimate the interpolation
for all possible interpolation points from ΓΩh .

The quality of the interpolation with the data reduction depends not only on
the number of interpolation points but also on the choice of the points (Fig. 2).
When compact basis functions in form (1−||x||)2 are used, the orientation of the
pressure distribution after interpolation depends on the partitioning. The best
interpolation is achieved for radial partitioning of the domain. The method of
radial basis functions with the global basis function φ(x) = ||x||2 log ||x|| gives the
best results. It allowed to reduce the number of equations (4) in 15 times, with
the acceptable quality of the interpolation. Inverse distances weighting (IDW)
interpolation gives the greatest error, even in the case of the full data.

The obtained matrix A is ill-conditioned. When using global basis functions,
the condition number depends on the number and location of the interpolation
points, as well as on the type of basis functions. The distance between interpola-
tion points effect on condition number (Table 2). As the number of interpolation

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

288



Table 1. Relative error of the pressure interpolation, %

all points Longitudinal / Radial distribution

nΓΩ
28800 9600 5760 2880 960

1− ||x|| 0.24 3.79/0.34 10.4/0.92 15.2/10.8 349.6/214.3

(1− ||x||)2 0.78 7.79/1.58 69.3/9.34 74.3/15.9 365.4/36.5

IDWp=3 14.2 50.6/53.9 105/111 189/205 407.0/534.2

e−||x||2 0.54 1.18/1.07 2.68/3.99 8.04/5.41 147.6/101.6

||x||2 log ||x|| 0.01 0.23/0.01 1.07/0.21 5.95/1.13 28.61/21.6

Table 2. Condition number and relative error of the pressure interpolation, %

Radial / Adaptive Adaptive distribution

nΓΩ
condition, ×105 9213 5595 2946 909

1− ||x|| 9 / 10 1.23 1.14 0.93 4.89

(1− ||x||)2 5 / 8 0.67 1.75 2.41 1360

IDWp=3 — 26.1 27.3 30.8 85.1

e−||x||2 4 / 5 0.94 1.12 0.82 9.61

||x||2 log ||x|| 105 / 106 0.37 1.25 1.31 3.65

points increases, the distance between them decreases, and the condition num-
ber increases. In this work, we consider the adaptive algorithm for choosing
interpolation points, which affects both their number and distribution.

The interpolation error is not the only reason for using an adaptive algorithm.
In the limit, as De Marchi showed [4], the optimal distribution of interpolation
points is their homogeneous distribution. Note that in the case of asymptotically
uniformly distributed interpolation points for some functions, theoretically, one
can obtain an arbitrarily high error, but for others, this is not attainable. Even
the use of greedy algorithms [9] does not provide the optimal data for RBF with
different functions.

The aim of adaptation algorithm is achieved sufficiently small interpolation
errors for nΩ points while taking only na points, where na ≪ nΩ . The adaptive
algorithm starts on a very small number of points and then refines the data set
by adding new points of interpolation where observed the interpolation error
is largest. This algorithm returns the reduced points set, together with their
associated coefficients that reproduce the interpolant function within a certain
tolerance. Furthermore, limits on the number of iterations and on the total num-
ber of interpolate points (nt) can be imposed.

Adaptive algorithm for selecting interpolation points

1. Select initial set of layers and solve for na init points
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2. Form and solve the linear system of the interpolation coefficients on initial
layers Aγ = b

3. Evaluate the interpolant at all nΩ data points pΦ = Aγ
4. Compute the residual vector or find errors E(x) = (p(x)− pΩ(x))
5. Check the stopping criteria, and if they are not satisfied, increase the itera-

tion count and add new points with the largest E(x)
6. Adaptation successful done if the residual is smaller than a given tolerance

For the fluid dynamic problem about the supersonic nozzle flow with overex-
pansion, the line ℓ = {(argminx p(x, ϕ∗), ϕ∗) ∈ Γ : 0 ≤ ϕ∗ < 2π} divide the set
of interpolation points Ω into Γ1, where p = p(x) is the region of axial symmetry
and Γ2, where p = p(x, ϕ) (Fig. 3, 4, 5 (a)).

Let apply the above adaptive algorithm to the pressure interpolation for the
consider fluid-structure interaction problem. At the first step, we apply it to the
layers to which the set of interpolation points is divided, that is, we shorten the
set of interpolation points along the coordinate x. Thus, we leave from all layers
the minimum quantity that satisfies the error of interpolation. At the second
step, we apply this algorithm in each remaining layer to select interpolation
points with the largest error in the coordinate ϕ. Thus, we reduce the number
of interpolation points in both coordinates, preserving the interpolation error.

In addition to the pressure p = p(x, ϕ) determined on Ω, the gradient grad p
is also known. It is used as an indicator of adding additional interpolation points.
Layers and interpolation points are added to the minimal set of points in the
case of their location in the regions of the largest gradient.

We also considered an adaptive algorithm without information about the
gradient. In this case, the indicator of the interpolation error is obtained by
local basis functions or by inverse distance method.

Tables 1, 2 shows the error of the pressure interpolation at the radial and
adaptive distribution of interpolation points. We note that the adaptive choice
of interpolation points is increased the condition number of the matrix of the
system of equations (4), so that the iterative solution process converges slowly.

The adaptive distribution of the interpolation points using with local basis
function 1− ||x|| has substantially reduced the error for any number of interpo-
lation points. But, another local basis function (1 − ||x||)2 has a large error for
a small number of points. The Gaussian global function (Fig. 5 (b)) shows good
results for a small number of adaptively chosen interpolate points nΩ = 909.

4 Matrix-free solution of the interpolation system on

GPU

The one feature of the system (4) is a dense matrix A. This imposes restrictions
on the possibility of using GPUs, which are linked with a small capacity of avail-
able GPU memory size. The resolution of this problem can be reached in several
ways: (i) using several GPUs, thereby increasing the total memory available for
the system solution; (ii) solving the system of equations without formations of a
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(a) (b) (c)

Fig. 3. Pressure distribution: (a) adaptive distribution with nΩ = 9213; (b) e−||x||2 ;
(c) 1− ||x||.

(a) (b) (c)

Fig. 4. Pressure distribution: (a) adaptive distribution with nΩ = 5595; (b) e−||x||2 ;
(c) 1− ||x||.

(a) (b) (c)

Fig. 5. Pressure distribution: (a) adaptive distribution with nΩ = 909; (b) e−||x||2 ; (c)
1− ||x||.

matrix (Free Matrix Algorithm). In this case, the matrix elements are computed
as required their uses in an algorithm of the system solution. The solution of the
system in the method of radial basis functions is possible without the formation
of a matrix. It possible because the elements of the matrix are computed by the
chosen basis function. This improves the data locality and arithmetic intensity
for matrices and vectors. The memory requirements and CPU-GPU communica-
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tions are reduced. The efficiency of the algorithm can be improved if multi-GPUs
are used, similar to [6].

Consider in more detail computing expenses of FMA. Table 3 shows the time
of sequential and parallel formation of a matrix A of the system (4). In the
FMA, the formation time is excluded. For comparison, the time of the solution
of the system with assembled matrix is given. Also, we presented the time of
copying matrix to the GPU memory. The time of solving systems is presented
for algorithms with a assembled matrix and a free matrix form.

CPU parallelization is carried out with OpenMP. The solution of the sys-
tem of equations on several GPUs is carried out by CUDA in conjunction with
OpenMP. The system of equations is solved by the conjugate gradient method
with the diagonal preconditioner [6]. The precision is equal to 10−6. In com-
putations is used double-precision arithmetic. The analysis and performance
estimations are performed on a computing node consisting of 2 × quad− core
Intel Xeon processor E5-2609, 2×GeForce GTX 980 with 4Gb GDDR.

The solution of system of the equations with the assembled matrix consists
of several steps. In the case of using the CPU, the step of forming the matrix is
added. While using the GPU, adds a step of copying data to the GPU memory.
In the solution of the system using FMA, these steps are excluded. The total
time of each approach, with necessary steps is given in the last line of the table
3.

The numerical computations show that the use of eight CPU threads within
a one computing node reduces the solution time up to 7 times. Using of one
GPU the speedup of solving the system is up to 250 times in respect to one
CPU thread and up to 50 times in respect to 8 × CPU. The GPU efficiency
increases with the increase of the system dimension. The using of two GPUs
reduced the time to 1.5 times in respect to the use of one GPU and 350 times in
respect to the CPU. In this case, we can speak about strong scalability, which,
with an increase in the number of GPUs, can be provided only with preserving
of the sizes of the submatrices on each GPU.

The solution of the system in the matrix-free form using 8 × CPU shortens
the solution time to 2.5 times. However, the solution with the assembled matrix
is twice as faster as in the matrix-free form. As for the GPU, in the case of
using one GPU the operating time of the FMA is more than the solution of the
system with the assembled matrix in 5 times. In the case of using two GPUs,
this difference is reduced to 3 times. It is interesting to note that in the case of
FMA the increase in the number of GPUs in twice has halved the time of the
solving system. Using one GPU with FMA is obtained speedup about 55 times
that CPU and 110 times in the case of two GPUs. The memory reduction reaches
up to nΩ times. Note that the use of local basis functions with the introduced
radius of influence increases the efficiency of FMA.

Let us estimate the maximum size of the system, which can be solved using
FMA on a one GPU. To forming the matrix A, the coordinates of the inter-
polation points are used. Then for interpolation in three-dimensional space, it
is necessary to allocate memory to the vector of coordinates of length equal to

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

292



Table 3. The execution time of the interpolation for e−||x||2 , s

Number of equation

1202 8512 17984 28459

Forming of matrix A

1× CPU 0.098 5.655 33.91 60.85

8× CPU 0.018 0.907 6.166 12.16

FMA 0.0 0.0 0.0 0.0

Copy of matrix A to GPU

1×GPU 0.009 0.312 0.842 —

2×GPU 0.006 0.125 0.433 1.393

FMA 0.0 0.0 0.0 0.0

1× CPU 3.343 592.8 4732 10359

8× CPU 0.271 86.82 946.6 2273

System solution 8× CPU (FMA) 1.712 249.5 1489 4492

Aγ = b 1×GPU 0.288 2.282 12.11 —

2×GPU 1.262 2.354 8.643 16.19

1×GPU (FMA) 0.471 14.01 91.59 191.1

2×GPU (FMA) 1.226 8.664 47.03 95.58

Total time

1× CPU 3.438 598.5 4765 10419

8× CPU 0.288 86.82 952.7 2285

8× CPU (FMA) 1.712 249.6 1489 4492

1×GPU 0.317 3.53 19.12 —

2×GPU 1.283 3.38 15.24 29.74

1×GPU (FMA) 0.472 14.01 91.59 191.1

2×GPU (FMA) 1.226 8.664 47.03 95.58

nΩ × 3. In the case of solving the system with the assembled matrix, the size of
necessary memory is nΩ × nΩ . The remaining vectors participating in the con-
jugate gradient method coincide for both algorithms. Thus, the size of memory
to interpolate mesh data in three-dimensional space is reduced by nΩ/3 times.
And the maximum system size solved by the FMA increases by this number
of times. The algorithm of the conjugate gradient method with a diagonal pre-
conditioner involves the use of memory to store a matrix of size nΩ × 3 (FMA
algorithm) and six vectors nΩ × 1. Thus, using double precision arithmetic, to
solve the system using the FMA algorithm, nΩ × (3 + 6) × 8 byte is necessary.
Consequently, the maximum size of system for GPU with a 4Gb GDDR is about
6 × 108 equations. Using two graphics cards, the possible size of the system is
increased to 1.2×109 equations. Thus, for dense matrices obtaining on the basis
of global basis functions is constructed a parallel method of conjugate gradi-
ents. The computations are distributed among several GPUs. The using of the

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

293



matrix-free approach makes it possible to remove the limitations on the amount
of memory.

5 Conclusion

We consider various approaches to reduce computing for mesh-to-mesh inter-
polation by the example interaction of supersonic flow with a nozzle wall. The
using of adaptive data reduction based on the layer-by-layer partition of the
mesh make it possible to reduce the number of interpolation points. At the same
time, the quality of interpolation for the irregularly-spaced data is preserved,
both for global and for local basis functions.

The solution of systems with dense matrices by the FMA algorithm on the
CPU does not lead to significant time reductions. Since the time of matrix for-
mation is less than 1% of the solution time, the use of FMA in conjunction with
the CPU is inefficient.

A matrix-free approach is most effective when using a GPU, especially when
it is not possible to achieve a large reduction of points without loss of quality of
the interpolation. Using a GPU with a large number of system equations allows
minimizing the cost of additional computations associated with the formation
of matrix elements. At the same time, the reduction in the required memory is
essentially and multiple of the dimensionality of the system.Further increase in
the efficiency of FMA is associated with a decrease in the number of iterations
of the algorithm of solving the system of equation by constructing effective par-
allel preconditioners. And also by using local basis functions with the radius of
influence.
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