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Abstract. We consider different parallel versions of the least squares methods in the Krylov
subspaces which are based on computing various basis vectors. These algorithms are used for solv-
ing very large real, non-symmetric, in gerenal, sparse systems of linear algebraic equations (SLAEs)
which arise in grid approximations of multi-dimensional boundary value problems. In particular, the
Chebyshev acceleration approach, steepest descent and minimal residual, conjugate gradient and con-
jugate residual are applied as preliminary iterative processes. The resulting minimization of residuals
is provided by the block, or implicit, orthogonalization procedures. The properties of the Krylov ap-
proaches proposed are analysed in the “pure form”, i.e. without preconditioning. The main criteria of
parallelezation are estimated. The convergence rate and stability of the algorithms are demonstated
on the results of numerical experiments for the model SLAEs which present the exponential fitting
approximation of diffusion-convection equations on the meshes with various steps and with different
coefficients.
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1 Introduction

The mathematical modeling in real extremal interdisciplinary problems includes the solution of the
multi-dimensional direct and inverse tasks, linear and nonlinear, stationary and non-stationary, which
are approximated by various order numerical schemes on the non-structured grids in the complicated
computational domains. In any case, at a low level of these procedures, the multi-fold solution to
the systems of linear algebraic equations (SLAEs) is required. The practical high resolution demands
very large degrees of freedom (dof). So, the solution of the corresponding ill-conditioned SLAEs is
the bottle-neck of the general numerical process, because necessary computational resources grow
nonlinearly at this stage if the dimension of the system increases (for example, 1010 and higher).

In this case the road map to provide a high performance consists in parallel implementation
of modern multi-preconditioned iterative processes in the Krylov subspaces based on the domain
decomposition methods (DDM) (see [1], [2] and the references therein). The main achivements are
based on the combination of efficient mathematical discoveries and scalable parallel technologies on
the multi-processor systems (MPS) with distributed and hierarchical shared memory.
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This paper deals with just one particular side of the general problem. Namely, we consider the
possibility of parallel “implicit” construction of the iterative methods in the Krylov subspace “in the
pure form”, i.e. without preconditioning, which is supposed to be a separate problem.

Let us consider the solution of the SLAE

Au =
{

∑

l′∈ωl

al,l′ul′
}

= f, A = {al,l′} ∈ RN,N ,

u = {ul}, f = {fl} ∈ RN

(1)

with a large real sparse matrix resulting from grid approximations of multi-dimensional boundary
value problems by finite element, finite volume, or other methods. In general, this matrix is non-
symmetric and ill-conditioned. In equation (1), ωℓ denotes a set of indices of nonzero entries in the
ℓ-th row of the matrix A, whose number Nℓ is assumed to be much smaller than N . The algorithms
considered below can easily be extended to the case of complex SLAEs.

In [3], the authors have offered special procedures for accelerating the convergence of the Jacobi
method as an “efficient alternative” to the classical Krylov methods. In order to solve a linear sys-
tem, they have used the Anderson acceleration, which had been originally proposed in [4] for solving
systems of nonlinear algebraic equations, A comparative experimental analysis presented in [3] has
demonstrated a considerable superiority of the original alternating Anderson-Jacobi (AAJ) method
over the popular generalized minimal residual method (GMRES) as concerns the solution time. The
idea of the AAJ method consists in periodical (after a prescribed number of stationary iterations) use
of an acceleration method based on solving an auxilary least squares problem not involving successive
orthogonalization of the direction vectors, which is typical of the Krylov variational type methods.

The present paper aims at generalization and experimental study of the similar approaches. We
apply several non-stationary iterative algorithms as a preliminary tool for constructing some basis
vectors in the Krylov subspaces and further minimization of the residual vector norm by means of
the least squares method. In this context, parallel implementation of the approaches proposed is
considered.

This paper is organized as follows. In Section 2, we present the idea of implicit, or block, least
squares method in the Krylov subspaces which uses a preliminary consruction of the basis vectors. Sec-
tion 3 is devoted to analyzing the efficiency of parallel versions of the iterative algorithms considered
in comparison with the classical variational method of semi-conjugate residuals in the Krylov sub-
spaces. Section 4 discusses the results of numerical experiments obtained for the algorithms offered
on a series of the test SLAEs, resulting from the grid approximation of two-dimensional boundary
value problems for the convection-diffusion equation. In conclusion, we observe the efficiency of the
algorithms presented and discuss some plans for future studies.

2 Versions of the least squares methods in the Krylov subspaces

The wide class of iterative processes for solving SLAE (1) can be written in the form

un+1 = un + αnp
n = u0 + α0p

0 + ...+ αnp
n,

rn+1 = rn − αnAp
n = r0 + α0Ap

0 + ...+ αnAp
n.

(2)

Here u0 and r0 = f − Au0 are the initial guess and the corresponding residual vector, and pn, αn

are some direction vectors (usualy p0 = r0) and the iterative parameters which are defined from the
additional conditions in the different approaches.
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If A is a symmetric positive definite (spd) matrix, then the following conjugate direction (CD)
methods [1], [5]:

pn+1 = rn+1 + β(s)
n pn,

α
(s)
n =

(Asrn, rn)

(Apn, Aspn)
, β

(s)
n =

(Asrn+1, rn+1)

(Asrn, Asrn)
,

(3)

for s = 0, 1 present the classical conjugate gradient (CG) and conjugate residual (CR) algorithms,

respectively, which minimize the functionals Φ
(s)
n (r0) = (A−srn+1, rn+1) in the Krylov subspaces

Kn(r
0, A) = span (r0, Ar0, ..., Anr0). (4)

The residual and direction vectors in these approaches for all k, n satisfy the orthogonal properties

(Asrk, rn) = (Asrn, rn)δk,n, (Aspk, Apn) = (Aspn, Apn)δk,n (5)

where δk,n is the Kronecker symbol.
However, if A is a non-symmetric matrix, then these methods have no such variational and or-

thogonal properties. In such cases, the global minimization of the functionals Φ
(s)
n is provided by

the general minimized residual type (GMRES) approaches or by the equivalent, in some sense, semi-
conjugate direction(SCD) methods [6]

pn+1 = rn+1 −

n
∑

k=0

β
(s)
n,kp

k, β
(s)
n,k = (Apk, Asrn+1)/(Apn, Aspn). (6)

Let us remark that the formulas (6) realize the orthogonal properties (5) by Gram–Schmidt pro-
cedure. It fact, this procedure should be changed by more stable modified Gram–Schmidt (MGS)

orthogonalization [7]. If α
(s)
n are defined by (3) then for s = 0, 1 from (6) we provide the extremum

conditions

∂Φ(s)
n /∂αn = 0, Φ(s)

n = (rn+1, As−1rn+1), (7)

and for s = 1 the functional Φ
(s)
n has the minimum in the Krylov subspace (4).

In this case the resulting residual vectors are not conjugate, but semi-conjugate only, i.e.,

(Asrn, rk) =

{

0, k < n,
σn, k = n,

and for s = 0, 1 we have a semi-conjugate gradient and a semi-conjugate residual (SCG and SCR)
methods, respectively.

Let us remark, that for spd - matrix A, the CD methods (both CG and CR), as well as SCD
approaches (SCG and SCR) have the same theoretical number of iterations, see [1], [5]:

n(ε) ≈ 0.5|ℓn(ε/2)|(condA)−1/2 ,

where condA is the condition number of A and Φ
(s)
n ≤ ε2Φ

(s)
n−1, 0 < ε ≪ 1. But if A is non-symmetric,

the same estimate is valid for SCD but not for CD methods.
In the general case, to compute the vectors un and rn using (2)–(6), it is necessary to store all the

vectors pn, pn−1, ..., p0 and Apn, Apn−1, ..., Ap0. In practice, these methods are realized with periodic
restarts every m iteration. This means that the residual vector is computed from the original equation

rml = f −Auml, ℓ = 0, 1, ..., (8)
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rather than using (2), and the subsequent approximations are computed “from the beginning”, i.e.,
for n > m one should change n for n = ml in the formulas. Here, it is necessary to store only the last
m+1 vectors pn, pn−1, ..., pn−m, and Apn, Apn−1, ..., Apn−m. The restarted versions of SCD methods,
similar to restarded GMRES, have lower convergence rate, but this is the cost for the memory saved.

The most expensive stage of the SCD methods consists in successive computations of the direction
vectors pn+1 by means of long recursions (6). In accord with the Anderson acceleration approach, we
can simplify (6) and use in the sum the last direction vector pn only (but save the vectors pn, ..., pn−m

and Apn, ..., Apn−m). In these cases, the minimization of the residual norm ||rn+1||2 = (rn+1, rn+1)1/2

in the Krylov subspace
Kn,m(rn, A) = span (rn, Arn, ..., Amrn) (9)

can be provided by the following least squares method:

rn+m = rn −Wn,mγ̄n,m ≈ 0, Wn,m = (wnwn+1 ... wn+m) ∈ RN,m+1,
wn+k = Akpn, γ̄n,m = (γn, γn+1, ..., γn+m)T ∈ Rm+1.

(10)

The coefficient vector γ̄n,m can be computed from the over-determined SLAE

Wn,mγ̄n,m = rn, (11)

which can be solved, for example, by means of the singular value decomposition (SVD) or an other
approach (see [7]). In particular, the left-hand Gauss transformation procedure

Bn,mγ̄n,m = gn,m, Bn,m = W T
n,mWn,m ∈ Rm+1,m+1, gn,m = Wn,mr

n ∈ Rm+1 (12)

can be here efficiently applied.
In fact, the computing vectors pk, Apk in such algorithms can be realized by formulas (2), (3),

and we call them CD-LSM-ℓ (CG-LSM-ℓ and CR-LSM-ℓ for s = 0, 1, respectively) where the integer
ℓ = 1, 2 corresponds to application of formulas (11) or (12).

If the coefficent vector γ̄n,m is known, the improved numerical solution can be computed by the
formulae

un+m = un + γnp
n + ...+ γn+mpn+m. (13)

The considered algorithms can be simplified even to a greater extent if we use instead CG or CR
method, the two-terms formulas of the steapest descent (SD) or the minimal residual (MR) method,
which can be formaly described (for s = 0, 1 respectively) as follows, see [1], [5]:

α(s)
n = (Asrn, rn)/(Arn, Asrn), βn = 0, pn = rn. (14)

For the spd-matrices, these approaches provide the local variational properties only, i.e. for just

one iteration, but minimization of the functional Φ
(s)
n,m = (As−1rn+m, rn+m) in the Krylov subspaces

Kn,m(rn, A) can be achieved by the LSM-ℓ approaches (11) or (12). Such methods will be called
SD-LSM-ℓ and MR-LSM-ℓ, ℓ = 1, 2. Of course, for SD and MR methods with local variational
properties, the convergence rates of iterations are worse as compared to the previous algorithms
(n(ε) ∼ condA only ), but let us remind that it is just the way to obtain the basis vector for LSM
optimization.

In all the approaches considered above, we use the least squares methods, based on the direction
vectors pn with weak orthogonal, or variational, properties. Instead of this, we can construct the
basis vectors by application of the some spectral iterative process. If the matrix A has real positive
eigenvalues λ ∈ [0 < λ1, λN ], then the optimal convergence rate of iterations is provided by the
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Chebyshev acceleration [1], [5], [8]. Such approaches can be implemented in different forms, and we
use the two-terms recurrent representation, which consists of the following relations:

p0 = r0 = f −Au0,
un = un−1 + αn−1p

n−1,
rn = rn−1 − αn−1Ap

n−1,
pn = rn + βnp

n−1.

(15)

Here we use the restarted procedures which also suppose applying the LSM approaches by (11)
or (12) after each m iteration. The coefficients in (15) are defined via three terms description of the
Chebyshev acceleration presented in [8]:

u1 = u0 + τ r0, τ = 2/(λ1 + λN ), rn = f −Aun,

un+1 = un + τnτ r
n + (τn − 1)(un − un−1), τ0 = 2,

τn = 4(4− τn−1γ)
2)− 1, γ = (1− c)/(1 + c), c = λ1/λN .

(16)

The values of αn, βn from (15) provide the equivalence to reccurences (16) by the formulas

α0 = τ, αn = τnτ, βn = (τn − 1)αn−1/αn. (17)

After each m iterations by formulas (15)–(17) we can apply the acceleration procedures according to
(10)–(13). The corresponding algorithms we will call the Chebyshev least squares methods (CHEB-
LSM-1 and CHEB-LSM-2). We conclude this section with the following two remarks. First, it is easy
to check that from theoretical viewpoint, LSM-1 and LSM-2 coincide because, in exact arithmetic,
by solving equations (11) and (12) one obtains one and the same vector γ̄n,m. Second, an approach
similar to the one considered above was applied by P.L.Montgomery in [9] (see [10] also) in solving
special systems of linear algebraic equations over a finite field and was referred to as the block Lanczos
method.

3 Properties of parallel implementation

As is seen, the implementation of the optimal SCR method includes at each iteration the following
main stages:

• one matrix-vector multiplications (MV-operations);

• 2m+ 3 vector-vector (VV) operations, i.e. linear combinations of the vectors;

• computing the m+ 2 inner vector products.

It is important that all these operations are fulfilled successively. The idea of parallel implemen-
tation of the methods proposed with LSM-2 approaches consists in the simultaneous computation of
the entries of the matrix

Bn,m = {b
(n,m)
k,ℓ = (wk, wℓ); k, ℓ = n, ..., n −m}.

And for m ≪ N , we can neglect the costs for solving SLAEs (12) and compute the vector γ̄n,m by
formula (13) on the all processor units simultaneously.
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Now we compare parallel realizations of a cycle of m iterations in the methods LSM and SCR.
This will suffice for a qualitative comparison of the performances of the algorithms in question because
they minimize the same functional in the same Krylov subspace and, consequently, are theoretically
equivalent with respect to the convergence rate. Concerning the methods considered, we assume that
they are applied to a block system of linear equations of the form (1), and the block rows Ak =
{Ak,ℓ, ℓ = 1, .., P} ∈ RNk,N , Nk

∼= N/P, N1+ ...+Np = N of the coefficient matrix A are distributed
in the memory of the corresponding MPI processes used for the first level of parallelizing the algorithms,
as is done in the domain decomposition methods (where every block row corresponds to a subdomain,
see [11]). Note that in fact to different MPI processes different computer processors correspond
(though this is not formally necessary). In the SCR method, the direction vectors pn, pn−1, ..., pn−m

and also the current vectors un and rn are partitioned into subvectors of lengths Nk, each being stored
in the corresponding k-th MPI process. As the iterations proceed, data exchanges among processes
are needed, and their volumes should be minimized. When arithmetic operations are performed in
the k-th MPI process using a multicore processor, “inner” parallelization (of the second level) can
be effected based on multi-thread computations (here, we omit the details). A similar distributed
data structure is formed in the least squares methods, in which case the block partition is used for the
vectors wk, k = 1, ...,m. We assume that in all the algorithms the standard double-precision computer
arithmetics is used. For a comparative analysis of the performances of the methods considered, we
estimate the time TP of performing a cycle of m iterations on P MPI processes based on the following
simple model of the computation process:

TP = T a
P + T c

P ≈ τaNa + (τ0 + τcVc)Nc. (18)

Here, T a
P and T c

P are the times for performing arithmetic and communication operations, respec-
tivery; τa is the average time of a single arithmetic operation, and Na is the number of such operations
(for one processor); Nc is the total number of data transmittings; τ0 is the delay (tuning) time of a
single transaction; τc is the average time of transmitting a real number, and Vc is the average volume
of one package of data transmitted. Note that in view of the relations τ0 ≫ τc ≫ τa, it is natural to
attempt to minimize not only the total volume of information to be transmitted but also the number
of exchanges. This is important not only from the viewpoint of the time of data transmissions but
also in view of high energy costs of communication operations.

It is easy to check that in CG-LSM-2 or CR-LSM-2 for n 6= m we need to compute by formulas (2),
(3) just 2 inner products and 3 VV-operations. And if we use SD or MR approaches by (2), (14) with
local variational properties, then we must perform 2 inner products and 2 vector linear combination,
i.e. the difference is not significant as compared with CG or CR methods.

Let us now consider the combination of the Chebyshev acceleration (15)-(17) and the LSM ap-
proach. These algorithms do possess orthogonal or variational properties, but have the same optimal
estimation of n(ε). And what is important: the specrtal itarations do not need computation of inner
products!

The last circumstance is highly valuable in terms of the implementation of the iterative process at
the MPS, because these operations obviously need data communications. But this approach demands
the knowledge of the spectrum boundaries of the matrix. Of course, this is too strong requirement,
but in many practical problems the necessary estimations can be obtained.

It should be remarked that the implementation of the LSM with different preliminary iterative
approaches does not need the computation of the vectors un, because at the end of any algorithms
considered, the resulting vector is realized by (13). Of course, this operation can also be parallelized
efficiently.
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4 Discussion of numerical experiments

Let us consider the Dirichlet problem [8] for the convection-diffusion equation

−
∂2u

∂x2
−

∂2u

∂y2
+ p

∂u

∂x
+ q

∂u

∂y
= f(x, y), (x, y) ∈ Ω,

u|Γ = g(x, y),
(19)

in a square computational domain Ω = (0, 1)2 with the boundary Γ and the convection coefficients
p, q, which for simplicity are assumed to be constant. This boundary value problem is approximated
on a square grid with the step size h = 1/(L+ 1) and the total number of interior nodes N = L2,

xi = ih, yj = jh, i, j = 0, 1, ..., L + 1, (20)

using the five-point finite-volume monotone approximations of exponential type [12]

(Au)l = al,lul + al,l−1ul−1 + al,l+1ul+1 + al,l−Lul−L + al,l+Lul+L = fl, (21)

having the second order of accuracy. Here, ℓ is the “global” number of a grid node in the natural node
ordering, ℓ = i+ (j − 1)L. Generally speaking, formulas for the coefficients in equations (20) may be
different, and we use the following ones:

al,l±1 = e±ph/2/h, al,l±L = e±qh/2/h,

al,l = al,l−1 + al,l−L + al,l+1 + al,l+L.
(22)

Equations (21) are written for the interior nodes of the grid, but for the near-boundary nodes with
the subscripts i = 1,L or j = 1,L the values of the solution on the boundary should be substituted
into the system of equations and moved to the right-hand side; here, the corresponding coefficients
of the left-hand side can be formally set to zero. In our experiments, we have actually solved the
normalized equations, which are obtained by the following transformations with the diagonal matrix
D = diag {aℓ, ℓ}:

D−1/2AD−1/2D1/2u = D−1/2f,

Āū = f̄ , Ā = D−1/2AD−1/2, ū = D1/2u, f̄ = D−1/2f.
(23)

The numerical experiments have been carried out using the standard double-precision arithmetic
for computing the values of the functions f(x, y) = 0 and g(x, y) = 1 corresponding to the exact
solution u(x, y) = 1 of problem (19). Since the convergence rate of iterations depends on the initial
error u−u0, its influence has been analyzed by comparing the results for the initial guesses u0 = 0 and
u0 = P2(x, y) = x2 + y2. The stopping criterion used has been of the from (rn, rn) ≤ ε2(f, f), with
ε = 10−7. The computations have been carried out on grids with N = 72, 152, 312, 632, and 1272 nodes
and for the restart parameter m = 8, 16, 32, 64, and 128. In the tables below, we present the results
obtained in solving problem (19) with the convection coefficients p = q = 0 and p = q = 4 on the grids
with N = 72, 152, 312, 632, 1272 nodes and for different initial guesses. The algorithms applied differ
in the method of forming the auxiliary linear system for finding the coefficient vector of correction
(to be exact, the systems obtained in LSM-1 and LSM-2 have been solved using the SVD program
(the singular value decomposition algorithm) from LAPACK, included into the program library MKL
Intel [13]). Let us remark that the matrix Bn,m from SLAE (12), which corresponds to LSM-2, has a
bigger condition number, as compared to the matrix Wn,m from (11). So, LSM-1 is more preferable,
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from the stability point of view. But in our experiments, the resulting errors are approximately equal
as for LSM-1 and LSM-2. So, in the following tables we present the numerical results for LSM-2 only.

The main goal of our experimental research consists not in demonstration of the high performance
of algorithms for very large SLAEs, but in study of the stability and convergence rate of LSM ap-
proaches with preliminary cheap iterative processes. All the calculations have been carried out on the
Siberian Super Computing Center cluster (http://www2.sscc.ru).

In the each cell of the following tables we present two values: the upper is the number of iterations,
and the lower is the resulting maximal error δ = max

i,j
{|1 − uni,j |}. In our experiments the results are

approximately the same for different initial guesses, and we present data for u0 = x2 + y2 only.
In the Tables 1, 2 we give the results for CHEB-LSM-2 algorithm for symmetric and non-symmetric

SLAEs. In both cases the boundaries λ1, λN of matrix spectrum in formylas (16), (17) were taken
for p = q = 0, but the presented results are close to each other enough. The columns with m = ∞
correspond to “pure” Chebyshev acceleration without LSM. It is evident from these tables, that in all
cases considered there is an optimal value m.

Table 1: CHEB-LSM-2, p = q = 0, u0 = x2 + y2

N \ m 8 16 32 64 128 ∞

34 29 32 41 41 41
72 2.4 · 10−7 7.8 · 10−8 9.9 · 10−16 1.3 · 10−7 1.3 · 10−7 1.3 · 10−7

90 75 63 64 82 82
152 1.2 · 10−6 5.3 · 10−7 5.3 · 10−8 5.9 · 10−9 2.0 · 10−7 2.0 · 10−7

281 197 140 127 128 163
312 3.6 · 10−6 3.5 · 10−6 1.3 · 10−6 1.6 · 10−7 3.1 · 10−8 3.0 · 10−7

960 586 390 267 251 327
632 1.0 · 10−5 1.0 · 10−5 9.6 · 10−6 6.8 · 10−6 2.3 · 10−6 3.1 · 10−7

3429 1991 1148 734 528 653
1272 2.9 · 10−5 2.9 · 10−5 2.9 · 10−5 2.7 · 10−5 2.2 · 10−5 3.5 · 10−7

Table 2: CHEB-LSM-2, p = q = 4, u0 = x2 + y2

N \ m 8 16 32 64 128 ∞

34 31 32 45 45 45
72 7.5 · 10−8 2.6 · 10−8 4.6 · 10−15 8.2 · 10−8 8.2 · 10−8 8.2 · 10−8

67 75 71 64 91 91
152 5.0 · 10−7 2.6 · 10−7 3.4 · 10−7 9.8 · 10−9 1.6 · 10−7 1.6 · 10−7

210 158 142 149 128 184
312 2.9 · 10−6 3.4 · 10−7 1.3 · 10−6 8.6 · 10−7 4.3 · 10−8 2.2 · 10−7

740 421 348 285 271 363
632 7.9 · 10−6 6.6 · 10−6 3.7 · 10−6 3.6 · 10−6 2.7 · 10−6 1.8 · 10−7

2654 1531 884 662 543 719
1272 2.4 · 10−5 2.3 · 10−5 2.1 · 10−5 1.8 · 10−6 7.6 · 10−6 1.7 · 10−7

The Tables 3, 4 demonstrate the similar results for CR-LSM-2 algorithm. The symmetric case
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(p = q = 0) show that conjugate residual is optimal for such SLAEs, and least squares approach is not
resonable here. But for non-symmetric algebraic systems the application of LSM gives the considerable
improvement of the iterative process. Let us remark, that the resulting numbers of iteration and errors
δ are approximatelly the same in CR and CHEB.

Table 3: CR-LSM-2, p = q = 4

N \ m 8 16 32 64 128

34 31 63 127 255
72 1.3 · 10−7 7.9 · 10−8 1.6 · 10−9 4.6 · 10−12 5.1 · 10−13

74 64 94 127 255
152 8.8 · 10−7 9.7 · 10−7 2.2 · 10−7 3.1 · 10−9 3.9 · 10−12

236 149 129 190 255
312 2.9 · 10−6 2.0 · 10−6 8.1 · 10−7 3.0 · 10−8 7.3 · 10−7

592 472 305 331 382
632 8.1 · 10−6 8.0 · 10−6 4.3 · 10−6 4.6 · 10−6 1.9 · 10−7

2612 1347 897 539 659
1272 2.4 · 10−5 2.3 · 10−5 2.1 · 10−5 1.3 · 10−5 1.2 · 10−5

Table 4: CR-LSM-2, p = q = 0, u0 = x2 + y2

N \ m 8 16 32 64 128

37 20 20 20 20
72 2.7 · 10−7 4.2 · 10−8 5.4 · 10−9 5.4 · 10−9 5.4 · 10−9

99 75 42 40 40
152 6.9 · 10−7 8.3 · 10−7 3.1 · 10−7 8.8 · 10−8 8.8 · 10−8

314 199 145 83 83
312 3.6 · 10−6 304 · 10−6 2.6 · 10−6 1.2 · 10−6 2.4 · 10−7

1084 626 390 283 160
632 1.0 · 10−5 1.0 · 10−5 9.2 · 10−6 8.4 · 10−6 2.6 · 10−6

3860 2119 1185 746 538
1272 2.9 · 10−5 2.9 · 10−5 2.8 · 10−5 2.8 · 10−5 2.1 · 10−5

In the Tables 5, 6, we present the results for CG-LSM, which confirm that the efficiency of conjugate
residual method, in combination with the least squares approach is approximately the same that of
CR algorithm.
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Table 5: CG-LSM-2, p = q = 0, u0 = x2 + y2

N \ m 8 16 32 64 128

38 20 20 20 20
72 1.8 · 10−7 4.7 · 10−8 5.4 · 10−9 5.4 · 10−9 5.4 · 10−9

99 76 43 41 41
152 5.4 · 10−7 5.5 · 10−7 1.5 · 10−7 2.6 · 10−8 2.6 · 10−8

316 211 156 86 81
312 3.0 · 10−6 1.3 · 10−6 9.9 · 10−7 5.7 · 10−7 1.7 · 10−7

1086 631 404 316 167
632 9.8 · 10−6 8.6 · 10−6 5.1 · 10−6 2.3 · 10−6 1.2 · 10−6

3865 2131 1210 757 614
1272 2.9 · 10−5 2.7 · 10−5 2.1 · 10−5 2.2 · 10−5 3.6 · 10−6

Table 6: CG-LSM-2, p = q = 4, u0 = x2 + y2

N \ m 8 16 32 64 128

34 31 63 127 255
72 1.5 · 10−7 1.6 · 10−8 2.5 · 10−10 3.8 · 10−12 2.1 · 10−13

78 69 94 127 455
152 1.3 · 10−7 2.2 · 10−7 2.2 · 10−8 1.1 · 10−9 6.6 · 10−11

239 151 156 190 255
312 2.1 · 10−6 1.5 · 10−6 7.5 · 10−7 1.9 · 10−8 5.2 · 10−8

596 481 311 337 382
632 7.8 · 10−6 5.8 · 10−6 1.7 · 10−6 7.1 · 10−7 9.9 · 10−8

2612 1351 900 568 736
1272 2.4 · 10−5 1.9 · 10−5 1.9 · 10−5 2.9 · 10−6 3.9 · 10−6

10

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

232



Table 7: MR-LSM-2, p = q = 0, u0 = x2 + y2

N \ m 8 16 32 64 128 ∞

37 21 32 64 128 185
72 2.7 · 10−7 5.5 · 10−8 7.0 · 10−9 2.8 · 10−9 2.8 · 10−9 4.8 · 10−7

99 76 67 82 128 703
152 5.4 · 10−7 5.5 · 10−7 4.3 · 10−7 2.1 · 10−7 2.6 · 10−8 1.3 · 10−6

316 202 187 253 267 2614
312 3.0 · 10−6 3.1 · 10−6 1.3 · 10−6 1.9 · 10−7 1.4 · 10−6 3.7 · 10−6

1086 631 559 505 636 9622
632 9.8 · 10−6 8.6 · 10−6 6.1 · 10−6 2.1 · 10−6 4.8 · 10−6 1.0 · 10−5

3860 2123 1427 1702 1906 35050
1272 2.9 · 10−5 2.9 · 10−5 2.6 · 10−5 2.2 · 10−5 1.7 · 10−5 2.9 · 10−5

At last, in the Table 7 we give the similar results for the minimal residual method with local varia-
tional properties. This approach presents a big disadvantage in efficiency, as compared to the previous
algorithms, even with application of the least squares methods. The close effect is demonstrated for
steepest decent (SD) method, both for symmetric and non-symmetric matrices.

5 Conclusion

We consider the generalization of Anderson acceleration, for parallel solving non-symmetric large
SLAEs with sparse matrices, on the base of least squares methods applied to some preliminary “cheap”
iterative process, which is used just for computing basis vectors for implicit, or block, implementation
of the Krylov type algorithms with periodicaly minimization of the residual vector before restarts.
The comparative experimental analysis of the variational conjugate gradient and conjugate residual
methods, as well as spectral Chebyshev acceleration demonstrates reasonable stability and conver-
gence rate of the iterations the methods proposed. The idea of increasing parallelism consists in the
simultaneous computations of big number of inner products, in contrast to successive computations in
the conventional Krykov algorithms. The perfomance of the proposed approaches at the real multi-
processor systems with distributed and hierarchical shared memory is the topic of futher research.

This work was supported by the Russian Science Foundation (project N 14-11-00485) and the
Russian Foundation for Basic Research (project N 16-29-15122).
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