Supercomputer modelling of electromagnetic wave scattering with boundary integral equation method

Andrey Aparinov, Central Aerohydrodynamic Institute

Alexey Setukha Lomonosov Moscow State University

Stanislav Stavtsev, Institute of Numerical Mathematics Russian Academy of Sciences (Moscow)

STATEMENT OF THE PROBLEM

incident field $\mathbf{E}^{0}(\mathbf{x})e^{-i\omega t}, \mathbf{H}^{0}(\mathbf{x})e^{-i\omega t}$	incident field $\vec{\mathbf{E}}^{0}(x)e^{-i\omega t}, \vec{\mathbf{H}}^{0}(x)e^{-i\omega t}$
	$\vec{\mathbf{E}}^{0}(x) = \vec{\mathbf{E}}_{0} e^{i\vec{\mathbf{k}}\vec{\mathbf{r}}},$
$\mathbf{E}(\mathbf{x})e^{-i\omega t}, \mathbf{H}(\mathbf{x})e^{-i\omega t}$	$\vec{\mathbf{H}}^{0}(x) = \frac{e}{\omega\mu\mu_{0}}\vec{\mathbf{k}}\times\vec{\mathbf{H}}_{0},$
	$\vec{\mathbf{k}} = k\vec{\mathbf{k}}_0$ - wave vector,
	$\left \mathbf{k}_{0} \right = 1, k^{2} = \omega^{2} \varepsilon \varepsilon_{0} \mu \mu_{0},$
Ω - domain outside bodies, Σ - total surface of bodies and screens	$\vec{\mathbf{r}}$ - radius vector of a point x

Maxwell's equations: $rot \mathbf{E} = i \mu \mu_0 \omega \mathbf{H}, rot \mathbf{H} = -i \varepsilon \varepsilon_0 \omega \mathbf{E}$

Boundary conditions: $\mathbf{E}_{full} \times \mathbf{n} = 0$ on a perfectly conducting surfaces of bodies and screens

Energy finiteness condition: $\mathbf{E} \in L_2^{loc}(\Omega), \mathbf{H} \in L_2^{loc}(\Omega)$

Sommerfeld radiation conditions at infinity:

$$\frac{\mathbf{d}}{\mathbf{d\tau}} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} - ik \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = o\left(\frac{1}{|\mathbf{x}|}\right), \quad \mathbf{\tau} = \frac{\mathbf{x}}{|\mathbf{x}|}, \quad \text{при} \quad |\mathbf{x}| \to \infty.$$

COMPUTATIONAL COMPLEXITY OF PROBLEMS

Boundary integral equations methods:

- $\lambda \ll L$ - The physical theory of diffraction is applicable (Analytic approximations of solutions of integral equations exist)

- $\lambda \sim L$, $\lambda > L$ - it is necessary to solve integral equations most difficult case

- $\lambda \approx L/10$,

- large object with a large number of small parts

integral representation of an electric field

$$\mathbf{E}(x) = \operatorname{grad}\operatorname{div} \iint_{\Sigma} \mathbf{j}(y)F(x-y)d\sigma_{y} + k^{2} \iint_{\Sigma} \mathbf{j}(y)F(x-y)d\sigma_{y}$$
$$F(x-y) = \frac{e^{ikR}}{R}, \quad R = |x-y|, \ k = \frac{\omega}{c}, \ c = \frac{1}{\sqrt{\varepsilon\mu}}.$$

integral equation:

$$\int_{\Sigma} \mathbf{n}(x) \times \mathbf{K}(\mathbf{j}, x, y) d\sigma_{y} = \mathbf{f}(x), x \in \Sigma, \ \mathbf{f}(x) = -\mathbf{n}(x) \times \vec{\mathbf{E}}^{0}(x)$$

core of the integral equation:

$$\begin{aligned} \mathbf{K}(\mathbf{j}, x, y) &= grad_{\mathbf{x}} div_{\mathbf{x}} \left(\mathbf{j} F(x-y) \right) + k^{2} \mathbf{j} F(x-y), \ \mathbf{j}, x, y \in R^{3} \\ \mathbf{K}(\mathbf{j}, x, y) &= \mathbf{K}_{0}(\mathbf{j}, x, y) + \mathbf{K}_{1}(\mathbf{j}, x, y) \\ \mathbf{K}_{0}(\mathbf{j}, x, y) &= \frac{-\mathbf{j} + 3\mathbf{r}(\mathbf{r}, \mathbf{j})}{R^{3}}, \\ \mathbf{K}_{1}(\mathbf{j}, x, y) &= \left(\mathbf{j} - 3\mathbf{r}(\mathbf{r}, \mathbf{j}) \right) \frac{1 - e^{ikR} + ikRe^{ikR}}{R^{3}} + \left(\mathbf{j} - \mathbf{r}(\mathbf{r}, \mathbf{j}) \right) \frac{k^{2}e^{ikR}}{R}, \ \mathbf{r} = \frac{x - y}{R}, \\ \left| \mathbf{K}_{0}(\mathbf{j}, x, y) \right| \leq O\left(\frac{1}{R^{3}}\right), \left| \mathbf{K}_{1}(\mathbf{j}, x, y) \right| \leq O\left(\frac{1}{R}\right) \end{aligned}$$

Integral is understood as hyper singular in the sense of the Hadamard finite value

THE NUMERICAL SCHEME

ON THE SOLUTION OF A SYSTEM OF LINEAR EQUATIONS

1) the matrix has a block structure

$$A_{ij} = \begin{pmatrix} a_{ij}^{11} & a_{ij}^{12} \\ a_{ij}^{21} & a_{ij}^{22} \end{pmatrix}.$$

2) the matrix is filled

3) A_{ij} - the block describes the interaction of the source cell with the number *i* and the cell of the receiver with the number *j*.

We can talk about the interaction of the source point x_i and the point of the receiver x_i

4) Interaction decreases with increasing distance between the source and receiver

MOSAIC-SKELETON APPROXIMATION

Goreinov S.A., Tyrtyshnikov E.E., Zamarashkin N.L. A theory pseudo-skeleton approximations. // Lin. Algebra Appl. 261:1-21, 1997.

1) We separate points (receivers and sources) into clusters

2) Each pair of clusters corresponds to some block of the matrix

3) Each block is represented in the form $A = U \times V$,

$$\mathbf{A} = (\mathbf{U}) \mathbf{V} \qquad r \ll m', n$$
$$m' \times n' \qquad r \times n'$$

IMPROVING COMPUTING PERFORMANCE

- using standard Scalapack procedures for LU factorization or with GMRES iterative method.

- using Mosaic-skeleton approximation method
- using of parallel implementation of the Mosaic-skeleton method

A critical problem is the large RAM memory needs for the matrix storage

When using the mosaic-skeleton method, the degree of compression of the matrix depends on the particular problem

SCATTERING OF AN ELECTROMAGNETIC WAVE BY CYLINDER

Radar cross section (RSC)

$$\sigma(\boldsymbol{\tau}) = \lim_{R \to \infty} 4\pi R^2 \frac{|\mathbf{E}(R\boldsymbol{\tau})|^2}{|\mathbf{E}_{ent}|^2}$$

THE EFFICIENCY OF THE COMPUTATIONAL ALGORITHM

Table 1. Required storage for matrix.

n	4GHz	8 GHz	16 GHz	full matrix
21760	1.962 Gb (7.0%)	2.340Gb $(8.3%)$	2.999Gb $(11%)$	28.223Gb
45784	4.457Gb (3.6%)	5.369Gb $(4.3%)$	6.927 Gb (5.6%)	124.920Gb
273600			48.998Gb (4.39%)	1115.456Gb

Table 2. Acceleration of matrix calculations for various number of processors. Number of cells 273600. Frequency 16 GHz.

n_p	1	2	4	8	16	32	64	128	
	1.00	1.91	3.39	6.22	11.07	19.95	30.52	42.10	

Table 3. Acceleration of system solution for various number of processors. Number of cells 273600. Frequency 16 GHz.

DIAGRAM OF BACKSCATTERING

Radiation frequency 4 GHc - $\lambda = 7.5cm = 0.3H$

a) 13482 cells	b) 21760 cells	c) 45784 cells
(h = 0.5cm)	(h = 0.375cm)	(h = 0.2cm)

a) 13482 cells (h = 0.5cm)

b) 21760 cells (h = 0.375cm)

c) 45784 cells (h = 0.2cm)

COMPUTING COSTS

13482 cells	Personal Computer, <1 hour			
21760 cells	Personal Computer, ~ 24 hour, RAM 36 GGb			
45784 cells	a) with mosaic-skeleton method: Personal Computer, <4 hour			
	б) on supercomputer "Chebyshev" in Lomonosov Moscow State			
	University supercomputer center, 150 processors and 225 Gb of RAM.			
273600 cells	with mosaic-skeleton parallel method			
	INM RAS computer cluster, 128 processors, ~ 8 hour			