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Motivation

Oil in carbonate reservoirs

“... more than 60% of the world's oil and 40% of the world's gas reserves
are held in carbonate reservoirs.”

Excerption from Schlumberger site:
http://www.slb.com/services/technical challenges/carbonates.aspx
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Oil in carbonate reservoirs
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Motivation

Common situation for hydrocarbon reservoirs in the
carbonate environment: oil is accumulated in caverns, but
permeability is determined mainly by fractures. Rock matrix
IS not permeable.

Fracture orientation governs underground fluid flow in
carbonate reservoirs and is of the primary interest in
recovery and development of hydrocarbon reservoirs.




Motivation

Cavernous/fractured reservoirs: core sample
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Motivation

Variety of fractures in the carbonate environment
(following J.-P.Petit et al.)
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FC — fracture corridors
BFC — bed controlled fracture
MBF — multibed fractures

HPF — highly persistent
fractures
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Motivation

Outcrop: fracture corridor (left) and caves (right) in carbonate environment
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Motivation

Regular seismic technology based on reflected waves cannot reconstruct the
fine structure of a fractured reservoir:

resolution of standard seismic technigues is of a few meters at best, while the
typical thickness of fracture corridors does not exceed a few tens of
centimeters.

Fortunately, these objects generate scattered waves which can deliver
Important knowledge about fine interior of hydrocarbon collectors.
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Presentation of the modeling technique

We need to perform reliable simulation of wave propagation in realistic 3D
heterogeneous media taking into account microstructure (fractures, cracks,
caverns etc.) to get a knowledge about propagation of a scattered energy.

To do this we are going to use the “working horse” for seismic wave
simulation:

Time domain explicit finite-differences methods

But with

local grid refinement in time and space within target area.




Presentation of the modeling technique

Multiscale 3D heterogeneous model
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Presentation of the modeling technique

First order system of viscoelastic wave equations
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Presentation of the modeling technique: local grid
refinement

1. Fine grid should be used only where \caverns\cracks\fractures are
presented in order to avoid unrealistic demands on computer
resources.

2. Different grids cause artificial interface reflections due to different
numerical dispersion.

3. These artificial reflections must be around 103 - 10 with respect
to incident wave.

4. Finite-difference scheme must be stable.



Presentation of the modeling technique: local grid

refinement
Grid refinement in time and space Is doing on different interfaces:

Refinement in time
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Retinement in space
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Presentation of the modeling technique:

local grid refinement in time
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Presentation of the modeling technique:

local grid refinement in space
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Presentation of the modeling tec
the grid refinement (spect

nniques: stability of

ral criterium)

If finite-difference scheme is stable, eigenvalues of operator used to update

solution must be within the unit circle

Simultaneous refinement, Courant = 0.9, Jc=3’ JF=5

refinement by turn, Courant =0.9 , J =3, J_=5
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Presentation of the modeling technique: local grid
refinement

Artifacts due to local grid
refinement
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Parallel implementation: 3D domain
decomposition

] , Reference medium
Reservolr on [ — = on the coarse grid
the fine grid [mear——aaemms™

Fine-grid area can be placed anywhere
within the reference model regardless
to the specific domain decomposition
used in coarse-grid model.

Group of PU
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(fine grid)
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Parallel implementation: data excange

group 1

| group 2
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Parallel Iimplementation: Scalability

Optimal 3D Domain Decomposition via METIS.
Non-blocking send/receive procedures.

Computations are starting from the most interior point and are
expanding towards neighboring domain

Send/Recelve of partially sampled data



Parallel implementation: weak scalability
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Parallel implementation: strong scalability
(acceleration)

Acceleration
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Synthetic example: realistic model of a fractured reservoir

Top view
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Synthetic example: realistic model of a fractured reservoir

Side view x-line
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Synthetic example: realistic model of a fractured reservoir

= Side view in-line
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axis y (m)

Wavefield inside the reservoir, top view
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Wavefield inside the reservoir, top view. P-wave
scattering

| d

|

axis y (m)

200 -

400 -

600 -

800 -

-

Q

Q

o
T

faa

N

Q

Q
T

1400 |
1600 |-
1800 |-
2000 -

2200
0

uz component, plane XY, Z=1650 m

t=0.75000 s, max(abs(uz)) = 1.2e-013 x10°"®
T T T T T T T T

' . 5

...................................................................

1 1 1 I 1 i 1 1 I 1
200 400 600 800 1000 1200 1400 1600 1800 2000 2200
axis x (m)



Wavefield inside the reservoir, top view. S-wave
scattering

uz component, plane XY, Z =1650 m
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600

Wavefield, x-line view
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Wavefield, x-line view

uz component, plane XZ, Y=1100 m
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axis Z (m)

Wavefield, in-line view
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In-line
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Azimuth distribution of scattering energy
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Fracture orientation:
real case study (Yurubcheno-Tohomskoe).
Azimuth distribution of the scattered
energy vs UBI
(Ultrasonic borehole imager)



Scattering energy (green) vs UBI (red)

R=0.7, t=0.965
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Scattering energy (green) vs UBI (red)

R=0.97, t=0.969
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Scattering energy (green) vs UBI (red)

R=0.96, t=0.97/3
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Scattering energy (green) vs UBI (red)

R=0.94, t=0.9/8
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Conclusion:

Fracture orientation is given by azimuth
distribution of the scattered seismic energy!

SPE-1212-MS Imaging the scattered energy Vladimir Cheverda



Scattered waves and fluid saturation: core
samples and scattered energy
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Conclusion

1. Local grid refinement in time and space opens a possibility to
perform reliable simulation of seismic waves’ propagation through
cavernous fractured reservoirs.

2. Full multiscale numerical simulation forms the basis for mesoscale
characterization of cavernous fractured reservoirs via scattered
seismic waves;

3. Azimuth distribution of scattered energy gives reliable information
about dominant orientation of fracture corridors, which is verified by
synthetic and real data,

4. Multiple scattering seems to be useful to recognize fluid saturated
fracture corridors.



Road map

Questions should be answered shortly:

* How can we define fractures density expressed as spacing between
fractures;

* Connectivity of fractures;
* Fluid saturation;
* Aperture or width of fractures.
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