Two approaches to speeding
up dynamics simulation for a
low dimension mechanical
system

S.G. Orlov, A.K. Kuzin, N.N. Shabrov

Computer technologies in engineering dept.

Peter the Great St. Petersburg Polytechnic
University

Russian Supercomputing Days
Sept. 25-26 2017, Moscow, Russia

Outline

Model overview

Parallelization

o OpenMP for ODE right hand side

o Results

Exploring numerical methods

o Jacobian eigenvalue analysis

o Explicit (RK 4-8, GBS, extrapolated Euler)

o Semi-implicit (W1, SW2-4, extrapolated W1I)
o Completely implicit (trapezoidal rule)

o Stabilized explicit (DUMKA)

Conclusions

Model overview

driven shaft

Model overview

3D view

supports ———

rocker pins

pin-pulley
contact points

driving shaft

top view

driving moving J_I

pulleny

driving shaft

_____ driving fixed
_____ pulley

driving far

driving near

support

driven fixed
pulley

support

driven mowving
pulley

driven shafl

driven far
support ||

s driven near
support

Model overview
The system works like this:

Model overview

e The chain consists of plates and rocker pins
e Each pin has two halves rolling over each other
e There are many contact interactions

o pin — pulley =

rocker pins

o pin — plate

i
o pln — pin ®

Model overview

Pins, plates, and shafts are elastic

Model overview

21 generalized coordinates per chain link

, qU11 U2

ugl‘\]l U3l “22 U32

B - MG | ©— S
?i11ﬂ7‘ ?le

Uu21
pin half

e ninl ::'.H';I'I it :::I ::
; i th i ih B B i
1 H ::'.'r:i-:i: H HH BH |
k H i ::.:::.' HH B
: T ::H::"-' o ol ol
e 1 3 949

plate pack

=3
b

Model overview

There 1s contact friction

Contact forces Formulas

R

FP =N +RP, F°=N°+R?°

NP — —N°* = Nn®, N = N¢ + N4,

NEE _ EAE;"E, Nd _ bﬁ

R? = —R° = —f ([v"|, N°!) Nelr
ro=vL/Vi, VL= (- nm)- (v - v)

Normal force law
(Hertz)
NEF

Friction law (nonsmooth!)
1
Jo

10

Model overview

Pin-pulley contact surfaces are locally quadratic

contact Y,
point

. pulley

pin axis

-

Equations of motion

e Lagrange equations: E‘ft gfq.’ %E’ =

» leadto A(q)§ = F(t,q,4) = §=7F(tq,4q)
o The inertia matrix A is sparse block-diagonal
o Sometimes it really depends on g

e In the normal form, ODE system is ¢ = f(t, x)

qg=u | B v
g=v’ v v | = F(t,u,v)

11

Model overview

RHYIET_Lhid4 ' 1 T)
Tar suppart PP near support iii_
& far pul, aftach near pul. aitach, & ELEnEE
h :ii ‘iil :i 1Iiil h
—— |IH_/2 = = A
FR_moveable | @
‘ -
e _eve e Heterogeneous system

o different parts

SP_moveabis

lorque 3ppl. | far pul. attash

e @8 @& &9 @

13

The problem

Software product with docs, fancy GUI,
scripting, postprocessing, visualization, etc.,

and support.

But it runs slow
e] real time second costs ~10 hours CPU

time

The goal
o Make it run at least 100x faster

Parallelization

e Problem features

o Tiny memory requirements (just 3600 vars)
» Data most likely fits into cache

o Several different parts in model
» Including chain consisting of 80+ similar blocks
» And 300+ similar contact pairs

o f(t,z) costs ~1 ms for single thread

o Events (open/close contacts)

o Object oriented C++ code
= Not HPC-friendly memory organization

» Complicated memory access patterns
14

15

Parallelization

Solving IVP for z = f(t,x) =

v, F(t,u,v)]*

Currently using explicit RK4 scheme

ks = £ (60 + b, 2™ + hk,)

() = M) L R (4 2k 4 2k5 + ky).

Model has about 1800 genera.

1zed coordinates

o x dimension i1s about 3600

Parallelizing F'(t, u,v) evaluation

Parallelization

e First parallelize

16

o Chain forces
o Pin-pulley
contact forces

Big tasks within one

RK4 step
T = (u,v)? —> @
o v
S A(u) | Contact forces RHS

Chain forces l ODE

Jv Other forces
A=LU — F=(LU)'Q

i]’_:(n)—i‘]{,‘1 —> kz —> kd — k’,ﬁl

2R T A

RK4 QZ'(H_I_I)

17

Parallelization

10%

m Chain forces
®m Contact forces
Other forces
M Inertia decomposition
W Accelerations
Inertia matrix reduction
B Misc RHS calculations
RK4, event handling

24%

Sequential code

more detailed: €&:

Parallelization

e Targeting SMP & NUMA architectures
o Single nodes (now)
o Clusters, with new runtime from HLRS (future)
= This project i1s part of planned joint Russian-
German project by St. Petersburg Polytechnical
university and HLRS
e Using OpenMP
o Thread-based parallelism (now)

o Task-based parallelism (future)

18

Parallelization

Hardware parameters and OS/GCC versions

Tesla Tornado
Cores per
socket 6 14
Sockets 2 2
NUMA
Nodes 2 2
CPUs Intel Xeon CPU X5660 Intel Xeon CPU E5-2697 v3
2.80GHz 2.60GHz
I inux Ubuntu 16.04 4 T TS CentOS Linux release 7.0.1406
(Core)
GCC version 54.0 54.0

19

20

Parallelization

CPU time consumption in CVT simulation

All cores were explicitly
assigned with
GOMP_CPU_AFFINITY

variable so only one
NUMA node was used

o &
x‘ﬂ‘@{b Qéﬁa

m 1 thread m6 threads

21

12

10

Parallelization

Relative speedup of chain/contact forces evaluation

All cores were explicitly
assigned with
GOMP_CPU_AFFINITY

variable so only one
NUMA node was used if
possible

2 4 6 8 10 12 14

Number of cores

¥ |deal @ Tesla -+ Tornado

Jacobian eigenvalue analysis

System appears to be mildly stiff

Natural frequencies up to 10° 1/s
Real negative A up to —10% 1/s
o These are due to friction
» Pin-pin friction at
driving chain branch
1s the worst case

Jacobian changes fast

Jacobian eigenvalue analysis

4 &

f/ f

(%

v

original no friction

! o~
2wkt o ‘ apdeRE
Fy ‘.l L T el . " LTI - ':1‘:.:3 :i- . .,
‘ _.'“ , 1 . . ': 1 ol . e .. 5
- . L

Disable friction at all

T&1
1EH N BT] TL] - ‘
1ed
18
=led
& -
] .
-1e3
= 5 .; - -. o - ¥ . . -
N - g
- w W .
-1ed I‘ e .I" .I: - # *
" - .
e MG L L e
15 [}
‘ gy Ty
1a? Aeé 1a% =1od a3 Aa2 Tl 1l

N
LJ

Jacobian eigenvalue analysis

original x10 vy pin-pin

o T

- .] =
- ; fﬂ - i {, -.

: AL - v
'.:,E_ﬂ-:-- .. . = : o
o . & T U :ﬂ v a

., - "_ﬁ-:. . Wﬁ *} 1.....‘# .
, wgﬂ' . \@ - M’i‘;, 9
x10 vy pin-plate x10 vy pin-pulley

b [5<1

== - - ' & i

M‘."m . &-JF“- .

i L T
#"‘!- ﬁﬂ'-. o T * ,F""'l'... ...“i-ln
=y L® .] ¥ -3 R -
3 - 183 . —3
s + ¥ . 8
" i . i
o

fi
#I_
| el ——
L=
_j
L
Ly
" |
. . . LI
] B TIE
-

- L] - -. _‘- - =
. g] H - e
I et B FRE AR fg-

s PREI N e N A ™
:'l.- - i * T

)

.

N
+ Decrease slope of linear friction part

44
i1.
G
| ||
L
—4D.
s £ tads
E{'
4
=-

—_— —

=

:
]

Exploring numerical methods

e Explicit methods
o Easily implemented
o Step size limited by stability requirements
o But stability region can be extended...
e Semi-implicit methods
o Require system Jacobian or its approximation
o Linear system(s) at time step
e Completely implicit methods
o Require system Jacobian or its approximation
o Nonlinear system(s) at time step

25

Stability problems

26

Explicit methods

Common RK schemes

z

@

DOPRI45
DOPRI56
DOPRI78
GBS (smoothed)

Extrapolated Euler

@]

o

o

o

Local error

1 T 1 LIl T 1 1 LI B T 1 LI L
e Z=0 e 1=7 7 T ogay Lo 2e0 Eed =%
Fiwed caregories: model = atar-eeld-a Vorying caegories: solwer

W doprias w dopriss dopri7a m x2h-euler m E2h-gragg-smoots
W s ke W Wb s snesolh BOERD Buler W B gragy snooih

Sample curve

Fiwenl carsganes: imadel = narairasth Warying celernries: sfes, snlvar

W lc-8, kA) W Ge-V, dopris W De-Y, doprive mDe-T okl @ De-¥, x2h-ouler
]

-f, #2N-gragg-smooth @ 5e-7, #dh-gragg-smaoth @ 5e-7, Eh-gragg-sraath

Explicit methods

RK4 @ le-8 DQPR]LLE @ 5e-7

-1

Cé: ;

Q DOPRIS6 @ He-7
3 p -

O:

S :

L—d RK4 @ 5e-7 DOPRI78 @ 5e-7
m ﬁ: [I:I

.

) , -

27

x@__h—euler @ he-7

=T
I

L]

TE

=
BRI 14 A

KL_L h-eu

L0 twioooa I =

ler @ 5e-7

x6h-euler @ 5e-7

=lal
1

al
L]
-
[L1]
1

e
EIE S | T G T i O T [

GBS-2h @ 5e-7

1

1
ol L - T - LR F e Y]

GBS-LLh @ 5e-7

el

GBS-6h @ 5e-7

-
SLL RN PR [I [Scue B | Sl | R B al

Semi-implicit methods

e Rosenbrock

O

Requires ODE RHS Jacobian

o Jacobian is expensive /
too slow (?) _f/

0
+ W-methods R T
o Reuse Jacobin across steps
o Could work quite fast
o Schemes
» W1, SW2-4, X-SW1
o Accuracy problems

28

Semi-implicit methods

W24-dl @ le-7 | Wil-dl @ le-7

1 1ad
-led -tag el e 00 fe2 el fez 1ed -led -1e2 -led el 0 fe2 el 1e2 1ed

x2h-Wl1-dl @ le-7 - x4h-W1-dl @ le-7

Accuracy problems?

1e la
~fad e el Je? 00 fe-? fed 1e2 ed led -qel qed -te2 0 1el tel e 1ed

Maybe stability diagrams for W-methods are not representative

30

Trapezoidal rule

Excellent results at h = 2 - 107°
Convergence problems at larger steps
Lots of things to tweak in nonlinear solver
o How to compute Jacobian
= Recompute rarely
» Update to have superlinear convergence
o How to do linear search
o How to predict initial guess
o How to regularize equation
Still too slow w/o specialized code for Jacobian

Trapezoidal rule

e Sample curveath =2-10"%is .-

the same as the "exact" solution - [

(RK4, h = 2-107°) e
e Potentially, A could be greater, s

T LI T T T LI
5 =11 T inr e 1= P
u t'O]_ 0 Fised sobogoncs: model = rensmacth varyireg calenorics: solver
M rka trpz

o But this requires step size .

-
=

control

Fized calenorics: model = nonsrnooth

31

B 1=, rid, none, nons 2e-b6, iz, ddir-sim e,

1

T T T T
LRI DR R UL U B T | | L e e

T
R

K

wy L b

Varying categories: step. ODE soiver, Mewion soher settings, Meswton soler tolern
g-1

nce

Stabilized explicit RK: DUMKAS3

e Excellent results at h up to

4-107° (sample curve same as

the "exact” solution)

* 5.9x practical speedup R g T
(DUMKA-p5 @2e-6
vs RK4 @5e-8) -
i- M n\/\/\fnb\""*%ﬂ_ﬂ

« Had to disable original step size

s rhd v e

& polynomial order control

o Not ready for production R

Fimenl categpories: model = morsamnoath Ay e caiegoies siep sobeer

W Li-E, kA Ze=, dumka-ph S, dumbka-pd ¢ de-b, dumba-os

32

Stabilized explicit RK: DUMKAS

stability polynomial index

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13

2e-6 59

3e-6 4.7

4e-6 4.4

5e-6

3 6 9 15 21 27 36 48 63 81 135 189 243 324

stability polynomial degree

bad good failed untested

DUMEKA-p5 @ 2e-6 DUMKA-p7 @ 3e-6 DUMEKA-p8 @ 4e-6

1e3 ie3 ex]
1a2 1z 1a2
. A !
B H ; =18l
BT -1e1 -le-t
-2 1=z Te-2
Te-3 -le-3 Te-3
[L [
163 1a3 163
Tu-t Ty e
[1#1 Te-1
Tell 1ed Tell
Te! lel Tet
12 ie:z 12
[g3 (=]
a4 164 o4
ed Aer el Aed 00 e Aed ter ded led Aed den e 0 ie-? et 1ad Jed Apd el Aed dAedr O el b Ter ded

Future work

e Parallelization
o Optimize & parallelize inertia matrix decomposition
o Improve scalability of forces calculation
e Numerical integration
o Maybe try multistep methods
o Develop code to evaluate ODE RHS Jacobian faster
e Both

o Parallelize numerical integration algorithms, if

possible

34

35

Conclusions

Parallelization

o Chain forces scale better within one CPU

o There are more things to do (Amdahl's law 1is still here)

o Total speedup 2.8x (6 threads), 3.3x (12 threads)
Numerical methods

o Only DUMKAS i1s faster @ given accuracy than RK4

o W-methods didn't work at all «

o Implicit will be faster when J is computed faster

o There are more methods to try
o Total speedup 5.9x with DUMKAS3

Both
o ~19x cumulative speedup (estimated)
o There are things to do

36

Thank you

Questions?’

