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Model overview
The system works like this:




Model overview

e The chain consists of plates and rocker pins
e Each pin has two halves rolling over each other
e There are many contact interactions

o pin — pulley =

rocker pins

o pin — plate

i
o pln — pin ®




Model overview

Pins, plates, and shafts are elastic




Model overview

21 generalized coordinates per chain link
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Model overview

There 1s contact friction

Contact forces Formulas

R

FP =N +RP, F°=N°+R?°

NP — —N°* = Nn®, N = N¢ + N4,

NEE _ EAE;"E, Nd _ bﬁ

R? = —R° = —f ([v"|, N°!) Nelr
ro=vL/Vi, VL= (- nm)- (v - v)

Normal force law
(Hertz)
NEF

Friction law (nonsmooth!)
1
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Model overview

Pin-pulley contact surfaces are locally quadratic

contact Y,
point

. pulley

pin axis
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Equations of motion

e Lagrange equations: E‘ft gfq.’ %E’ =

» leadto A(q)§ = F(t,q,4) = §=7F(tq,4q)
o The inertia matrix A is sparse block-diagonal
o Sometimes it really depends on g

e In the normal form, ODE system is ¢ = f(t, x)

qg=u | B v
g=v’ v v | = F(t,u,v)
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Model overview
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The problem

Software product with docs, fancy GUI,
scripting, postprocessing, visualization, etc.,

and support.

But it runs slow
e ] real time second costs ~10 hours CPU

time

The goal
o Make it run at least 100x faster




Parallelization

e Problem features

o Tiny memory requirements (just 3600 vars)
» Data most likely fits into cache

o Several different parts in model
» Including chain consisting of 80+ similar blocks
» And 300+ similar contact pairs

o f(t,z) costs ~1 ms for single thread

o Events (open/close contacts)

o Object oriented C++ code
= Not HPC-friendly memory organization

» Complicated memory access patterns
14
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Parallelization

Solving IVP for z = f(t,x) =

v, F(t,u,v)]*

Currently using explicit RK4 scheme

ks = £ (60 + b, 2™ + hk,)

() = M) L R (4 2k 4 2k5 + ky).

Model has about 1800 genera.

1zed coordinates

o x dimension i1s about 3600

Parallelizing F'(t, u,v) evaluation



Parallelization

e First parallelize

16

o Chain forces
o Pin-pulley
contact forces

Big tasks within one

RK4 step
T = (u,v)? —> @
o v
S A(u) | Contact forces RHS

Chain forces l ODE

Jv Other forces
A=LU — F=(LU)'Q

i]’_:(n)—i‘ ]{,‘1 —> kz —> kd — k’,ﬁl

2R T A

RK4 QZ'(H_I_I)
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Parallelization

10%

m Chain forces
®m Contact forces
Other forces
M Inertia decomposition
W Accelerations
Inertia matrix reduction
B Misc RHS calculations
RK4, event handling

24%

Sequential code

more detailed: €&:



Parallelization

e Targeting SMP & NUMA architectures
o Single nodes (now)
o Clusters, with new runtime from HLRS (future)
= This project i1s part of planned joint Russian-
German project by St. Petersburg Polytechnical
university and HLRS
e Using OpenMP
o Thread-based parallelism (now)

o Task-based parallelism (future)

18



Parallelization

Hardware parameters and OS/GCC versions

Tesla Tornado
Cores per
socket 6 14
Sockets 2 2
NUMA
Nodes 2 2
CPUs Intel Xeon CPU X5660 Intel Xeon CPU E5-2697 v3
2.80GHz 2.60GHz
I inux Ubuntu 16.04 4 T TS CentOS Linux release 7.0.1406
(Core)
GCC version 54.0 54.0

19
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Parallelization

CPU time consumption in CVT simulation

All cores were explicitly
assigned with
GOMP_CPU_AFFINITY

variable so only one
NUMA node was used

o &
x‘ﬂ‘@{b Qéﬁa

m 1 thread m6 threads
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Parallelization

Relative speedup of chain/contact forces evaluation

All cores were explicitly
assigned with
GOMP_CPU_AFFINITY

variable so only one
NUMA node was used if
possible

2 4 6 8 10 12 14

Number of cores

¥ |deal @ Tesla -+ Tornado



Jacobian eigenvalue analysis

System appears to be mildly stiff

Natural frequencies up to 10° 1/s
Real negative A up to —10% 1/s
o These are due to friction
» Pin-pin friction at
driving chain branch
1s the worst case

Jacobian changes fast




Jacobian eigenvalue analysis
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Jacobian eigenvalue analysis
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Exploring numerical methods

e Explicit methods
o Easily implemented
o Step size limited by stability requirements
o But stability region can be extended...
e Semi-implicit methods
o Require system Jacobian or its approximation
o Linear system(s) at time step
e Completely implicit methods
o Require system Jacobian or its approximation
o Nonlinear system(s) at time step

25



Stability problems
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Explicit methods

Common RK schemes

z

@

DOPRI45
DOPRI56
DOPRI78
GBS (smoothed)

Extrapolated Euler

@]

o

o

o

Local error
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Explicit methods

RK4 @ le-8 DQPR]LLE @ 5e-7
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Semi-implicit methods

e Rosenbrock

O

Requires ODE RHS Jacobian

o Jacobian is expensive /
too slow (?) _f/

0
+ W-methods R T
o Reuse Jacobin across steps
o Could work quite fast
o Schemes
» W1, SW2-4, X-SW1
o Accuracy problems

28



Semi-implicit methods

W24-dl @ le-7 | Wil-dl @ le-7

1 1ad
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x2h-Wl1-dl @ le-7 - x4h-W1-dl @ le-7

Accuracy problems?

1e la
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Maybe stability diagrams for W-methods are not representative
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Trapezoidal rule

Excellent results at h = 2 - 107°
Convergence problems at larger steps
Lots of things to tweak in nonlinear solver
o How to compute Jacobian
= Recompute rarely
» Update to have superlinear convergence
o How to do linear search
o How to predict initial guess
o How to regularize equation
Still too slow w/o specialized code for Jacobian



Trapezoidal rule

e Sample curveath =2-10"%is .-

the same as the "exact" solution - [

(RK4, h = 2-107°) e
e Potentially, A could be greater, s

T LI T T T LI
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M rka trpz
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-
=

control

Fized calenorics: model = nonsrnooth
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Stabilized explicit RK: DUMKAS3

e Excellent results at h up to

4-107° (sample curve same as

the "exact” solution)

* 5.9x practical speedup R g T
(DUMKA-p5 @2e-6
vs RK4 @5e-8) -
i- M n\/\/\fnb\""*%ﬂ_ﬂ

« Had to disable original step size

s rhd v e

& polynomial order control

o Not ready for production R

Fimenl categpories: model = morsamnoath Ay e caiegoies siep sobeer

W Li-E, kA Ze=, dumka-ph S, dumbka-pd ¢ de-b, dumba-os
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Stabilized explicit RK: DUMKAS

stability polynomial index

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13

2e-6 59

3e-6 4.7

4e-6 4.4

5e-6

3 6 9 15 21 27 36 48 63 81 135 189 243 324

stability polynomial degree

bad good failed untested

DUMEKA-p5 @ 2e-6 DUMKA-p7 @ 3e-6 DUMEKA-p8 @ 4e-6
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Future work

e Parallelization
o Optimize & parallelize inertia matrix decomposition
o Improve scalability of forces calculation
e Numerical integration
o Maybe try multistep methods
o Develop code to evaluate ODE RHS Jacobian faster
e Both

o Parallelize numerical integration algorithms, if

possible

34
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Conclusions

Parallelization

o Chain forces scale better within one CPU

o There are more things to do (Amdahl's law 1is still here)

o Total speedup 2.8x (6 threads), 3.3x (12 threads)
Numerical methods

o Only DUMKAS i1s faster @ given accuracy than RK4

o W-methods didn't work at all «

o Implicit will be faster when J is computed faster

o There are more methods to try
o Total speedup 5.9x with DUMKAS3

Both
o ~19x cumulative speedup (estimated)
o There are things to do
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Thank you

Questions?’



