Two approaches to speeding up dynamics simulation for a low dimension mechanical system

S.G. Orlov, A.K. Kuzin, N.N. Shabrov

Computer technologies in engineering dept.

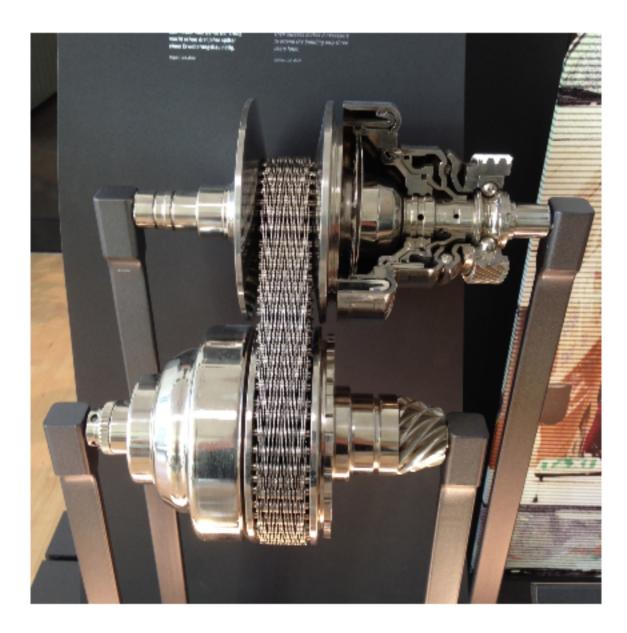
Peter the Great St. Petersburg Polytechnic
University

Russian Supercomputing Days Sept. 25-26 2017, Moscow, Russia

Outline

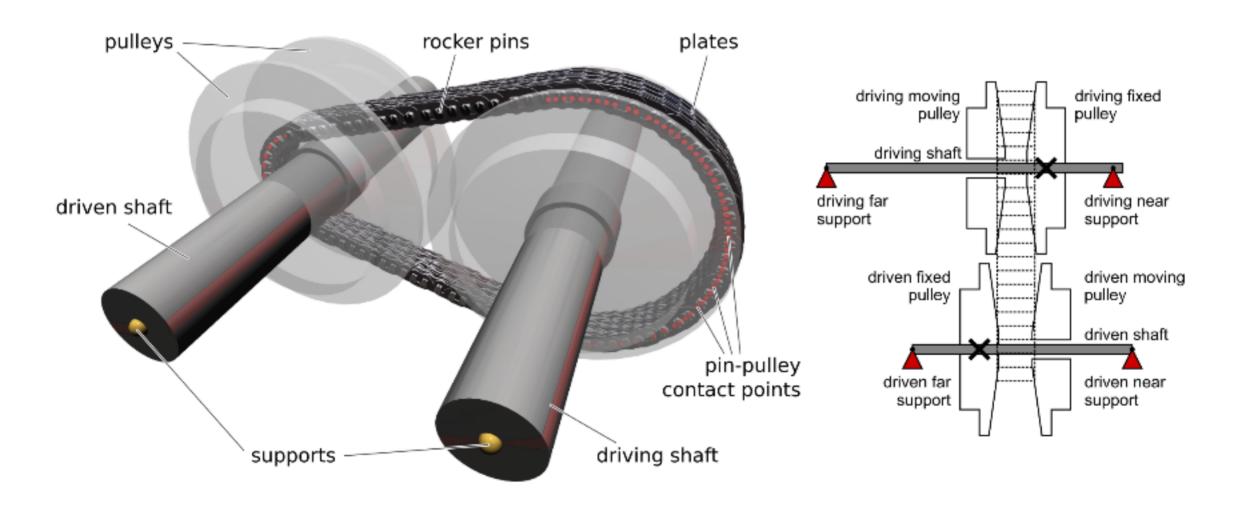
- Model overview
- Parallelization
 - OpenMP for ODE right hand side
 - Results
- Exploring numerical methods
 - Jacobian eigenvalue analysis
 - Explicit (RK 4-8, GBS, extrapolated Euler)
 - Semi-implicit (W1, SW2-4, extrapolated W1)
 - Completely implicit (trapezoidal rule)
 - Stabilized explicit (DUMKA)
- Conclusions

Model overview Real device



3D view

top view



The system works like this:

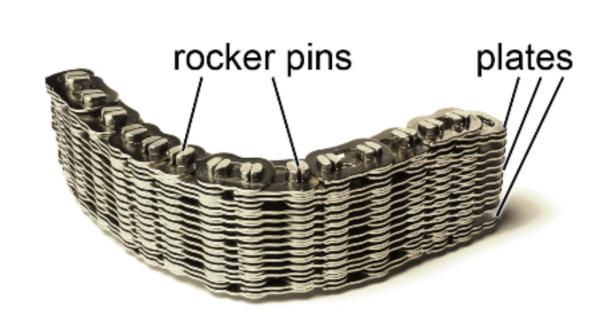
- The chain consists of plates and rocker pins
- Each pin has two halves rolling over each other
- There are many contact interactions

∘ pin — pulley

∘ pin — plate

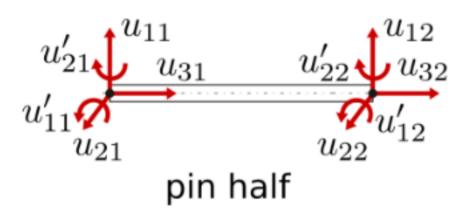


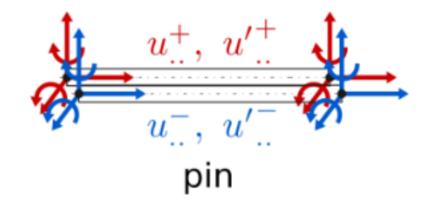
∘ pin — pin

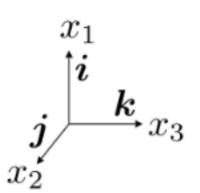


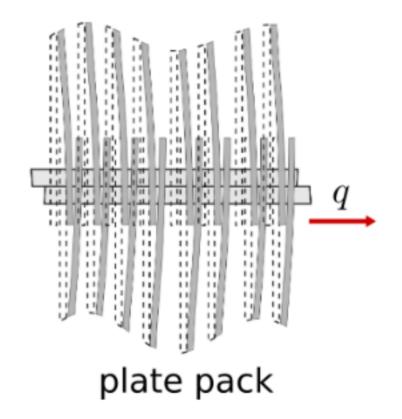
Pins, plates, and shafts are elastic

21 generalized coordinates per chain link



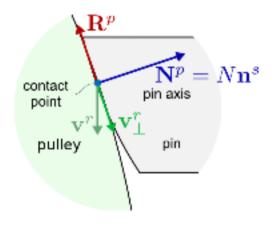






There is contact friction

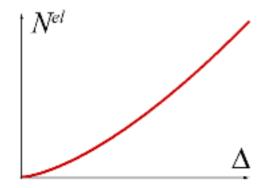
Contact forces



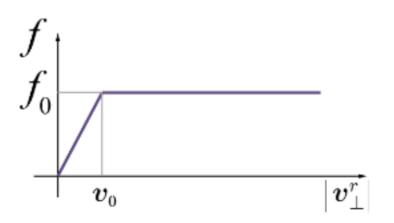
Formulas

$$egin{aligned} \mathbf{F}^p &= \mathbf{N}^p + \mathbf{R}^p, \quad \mathbf{F}^s &= \mathbf{N}^s + \mathbf{R}^s \ \mathbf{N}^p &= -\mathbf{N}^s = N\mathbf{n}^s, \quad N = N^{el} + N^d, \ N^{el} &= c\Delta^{3/2}, \quad N^d &= b\dot{\Delta} \ \mathbf{R}^p &= -\mathbf{R}^s &= -f\left(|\mathbf{v}_\perp^r|, N^{el}\right)N^{el} au_\perp, \ au_\perp &= \mathbf{v}_\perp^r/|\mathbf{v}_\perp^r|, \quad \mathbf{v}_\perp^r &= (\mathbf{I} - \mathbf{n}^s\mathbf{n}^s)\cdot(\mathbf{v}^p - \mathbf{v}^s) \end{aligned}$$

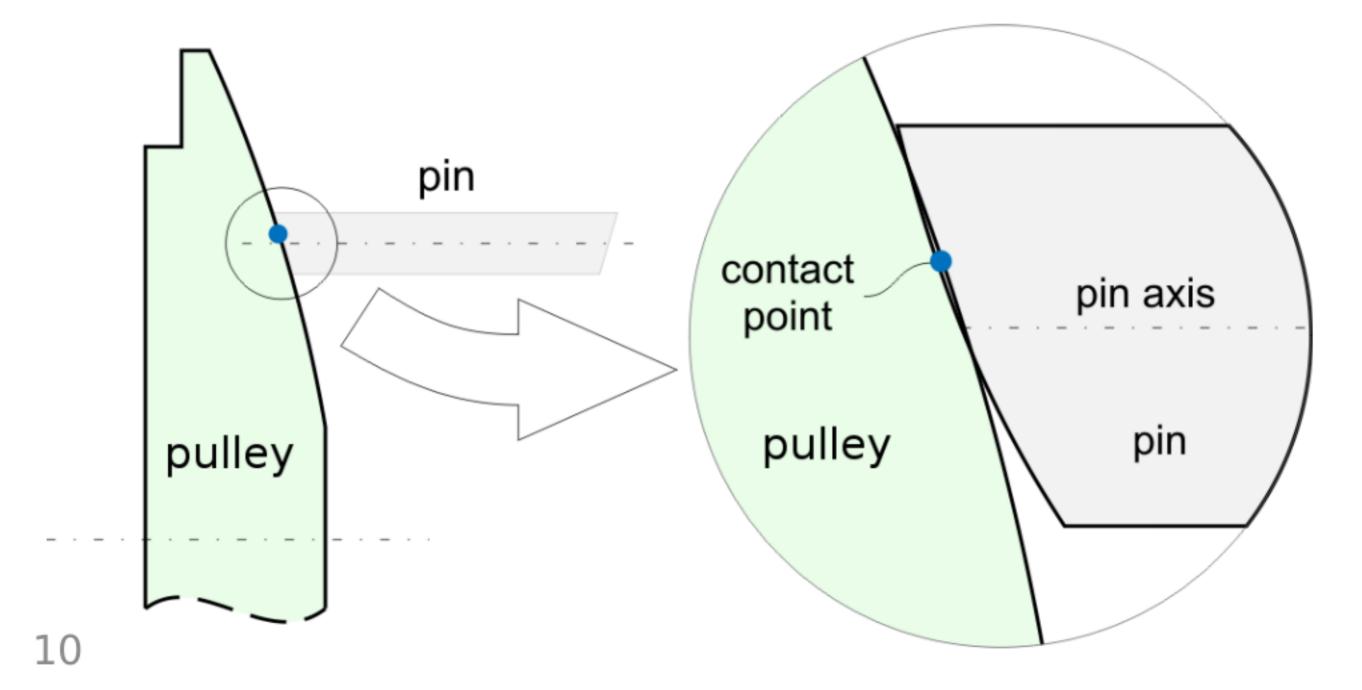
Normal force law (Hertz)



Friction law (nonsmooth!)

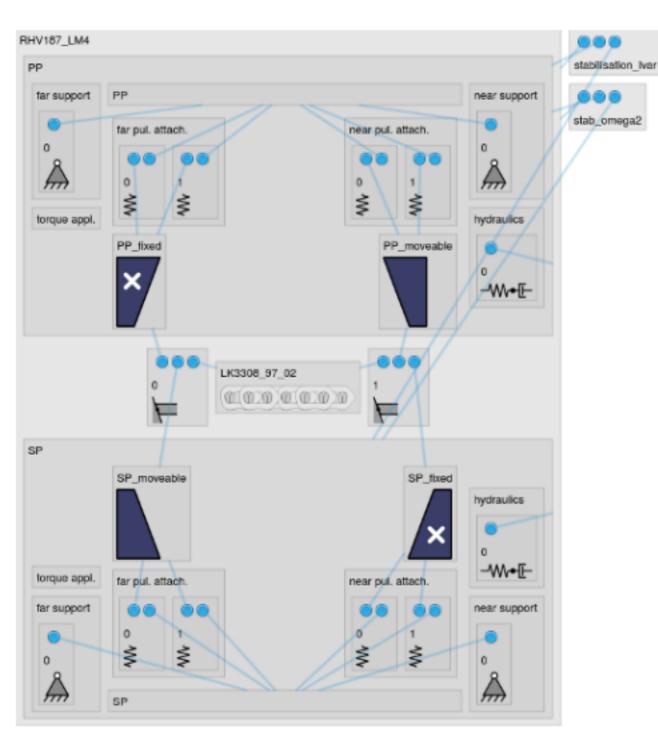


Pin-pulley contact surfaces are locally quadratic



Equations of motion

- Lagrange equations: $\frac{d}{dt} \frac{\partial L}{\partial \dot{q}} \frac{\partial L}{\partial q} = \tilde{Q}$
- lead to $\mathbf{A}(q)\ddot{q} = \tilde{F}(t,q,\dot{q}) \quad \Rightarrow \quad \ddot{q} = F(t,q,\dot{q})$
 - The inertia matrix A is sparse block-diagonal
 - \circ Sometimes it really depends on q
- In the normal form, ODE system is $\dot{x} = f(t,x)$



- Heterogeneous system
 - different parts

The problem

 Software product with docs, fancy GUI, scripting, postprocessing, visualization, etc., and support.

- But it runs slow
 - 1 real time second costs ~10 hours CPU time

- The goal
 - Make it run at least 100x faster

- Problem features
 - Tiny memory requirements (just 3600 vars)
 - Data most likely fits into cache
 - Several different parts in model
 - Including chain consisting of 80+ similar blocks
 - And 300+ similar contact pairs
 - \circ f(t,x) costs ~1 ms for single thread
 - Events (open/close contacts)
 - Object oriented C++ code
 - Not HPC-friendly memory organization
 - Complicated memory access patterns

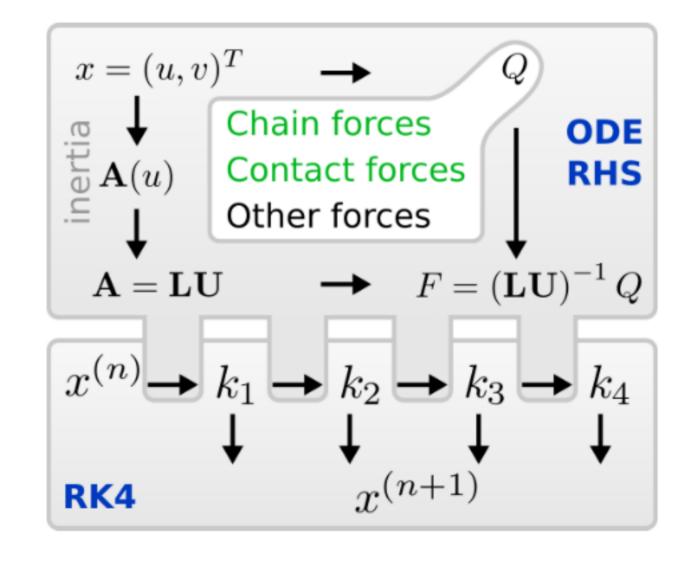
- Solving IVP for $\dot{x} = f(t,x) = [v, F(t,u,v)]^T$
- Currently using explicit RK4 scheme

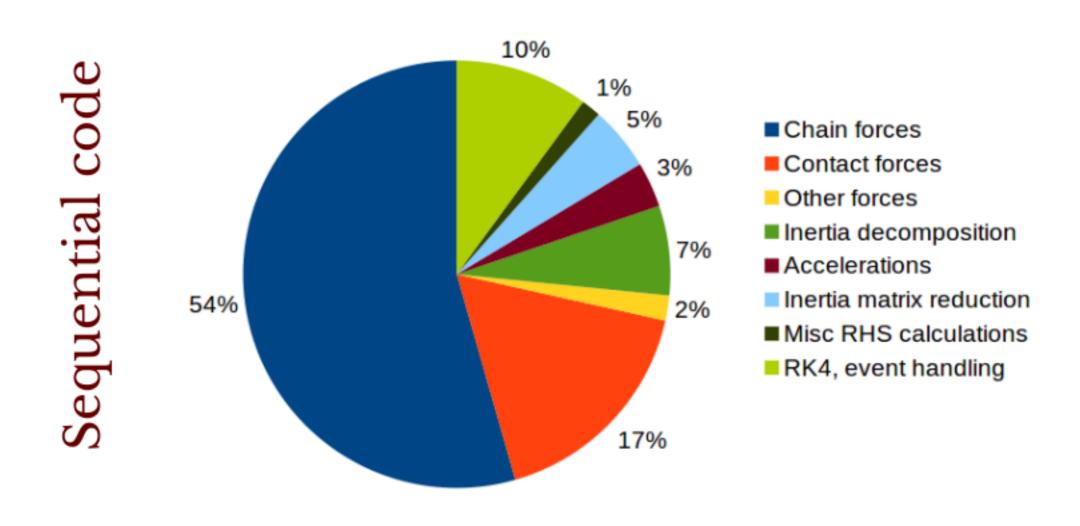
$$egin{aligned} k_1 &= f\left(t^{(n)}, x^{(n)}
ight), \ k_2 &= f\left(t^{(n)} + rac{h}{2}, x^{(n)} + rac{h}{2}k_1
ight), \ k_3 &= f\left(t^{(n)} + rac{h}{2}, x^{(n)} + rac{h}{2}k_2
ight), \ k_4 &= f\left(t^{(n)} + h, x^{(n)} + hk_3
ight), \ x^{(n+1)} &= x^{(n)} + rac{h}{6}\left(k_1 + 2k_2 + 2k_3 + k_4
ight). \end{aligned}$$

- Model has about 1800 generalized coordinates
 - $\circ \;\; x$ dimension is about 3600
- Parallelizing F(t, u, v) evaluation

Big tasks within one RK4 step

- First parallelize
 - Chain forces
 - Pin-pulley contact forces

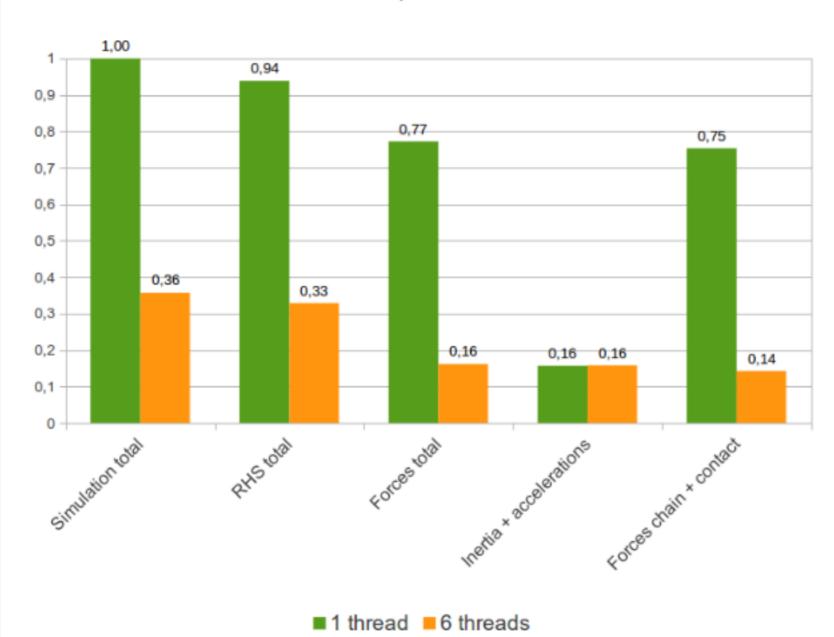




- Targeting SMP & NUMA architectures
 - Single nodes (now)
 - Clusters, with new runtime from HLRS (future)
 - This project is part of planned joint Russian-German project by St. Petersburg Polytechnical university and HLRS
- Using OpenMP
 - Thread-based parallelism (now)
 - Task-based parallelism (future)

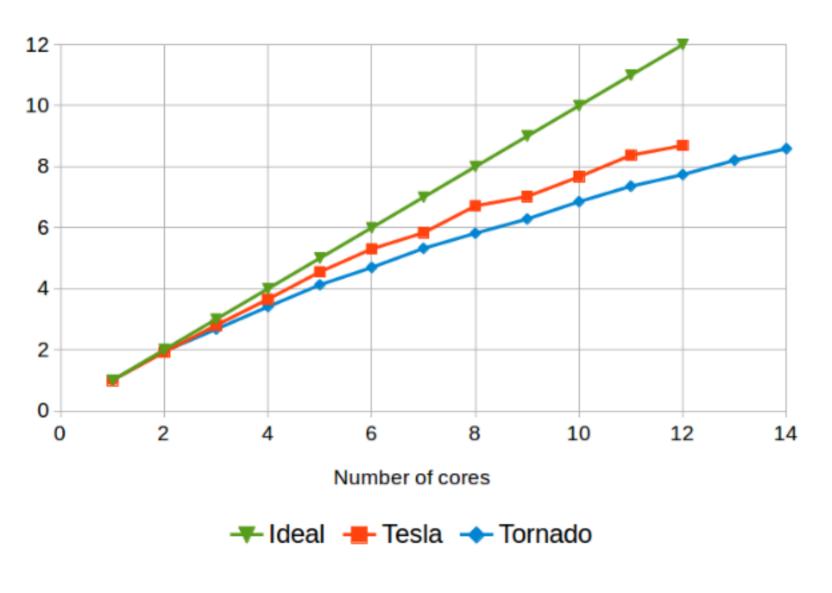
Hardware parameters and OS/GCC versions

	Tesla	Tornado
Cores per socket	6	14
Sockets	2	2
NUMA Nodes	2	2
CPUs	Intel Xeon CPU X5660 2.80GHz	Intel Xeon CPU E5-2697 v3 2.60GHz
Linux	Ubuntu 16.04.4 LTS	CentOS Linux release 7.0.1406 (Core)
GCC version	5.4.0	5.4.0



All cores were explicitly assigned with GOMP_CPU_AFFINITY variable so only one NUMA node was used

Relative speedup of chain/contact forces evaluation

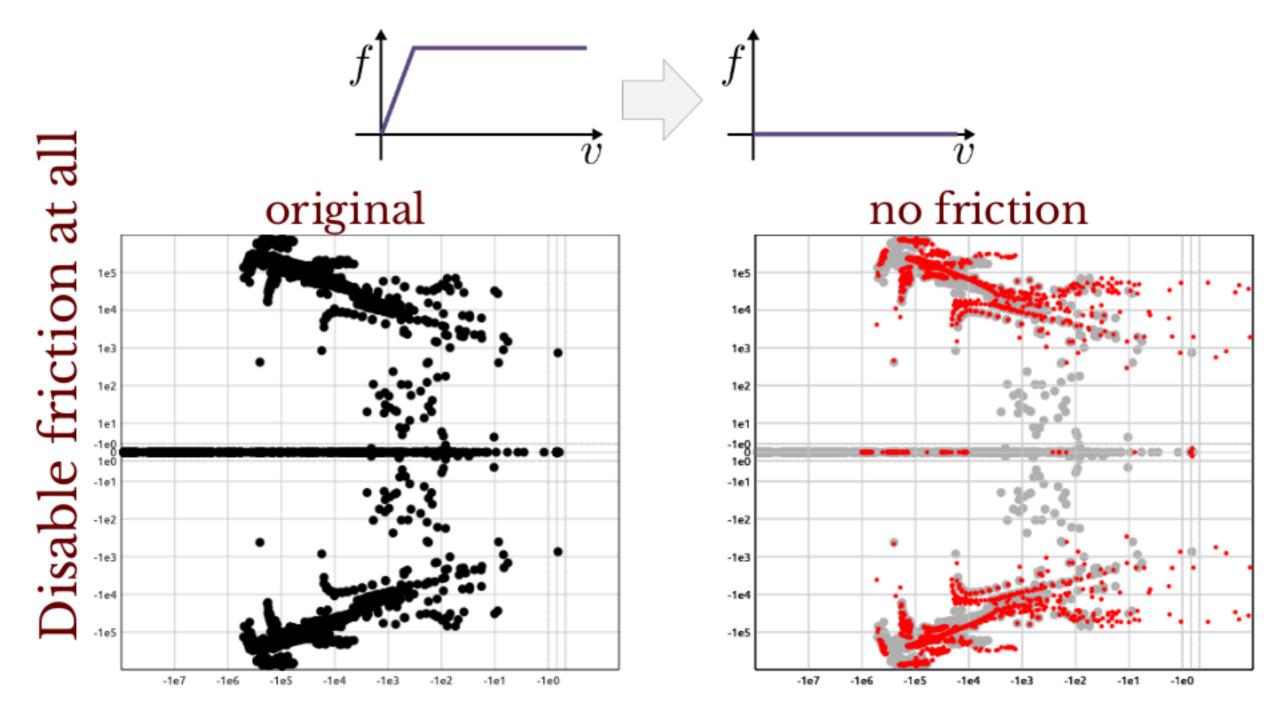


All cores were explicitly assigned with GOMP_CPU_AFFINITY variable so only one NUMA node was used if possible

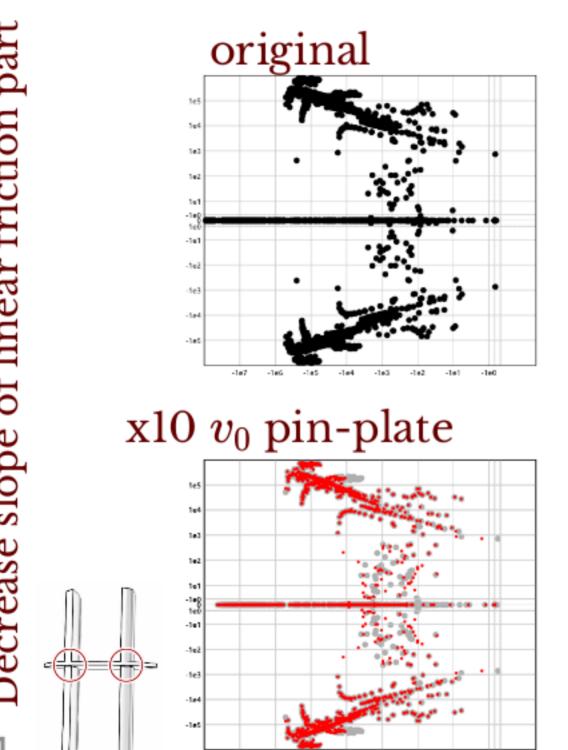
Jacobian eigenvalue analysis

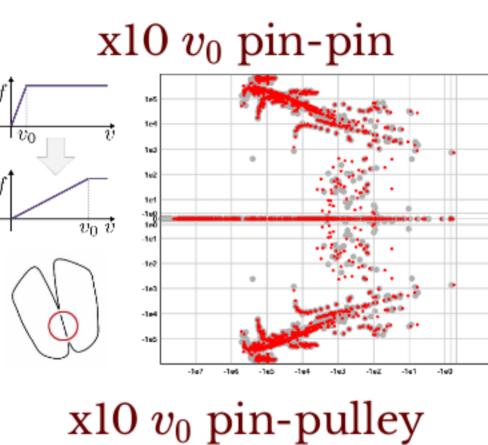
- System appears to be mildly stiff
- Natural frequencies up to 10⁶ 1/s
- Real negative λ up to -10^8 1/s
 - These are due to friction
 - Pin-pin friction at driving chain branch is the worst case
- Jacobian changes fast

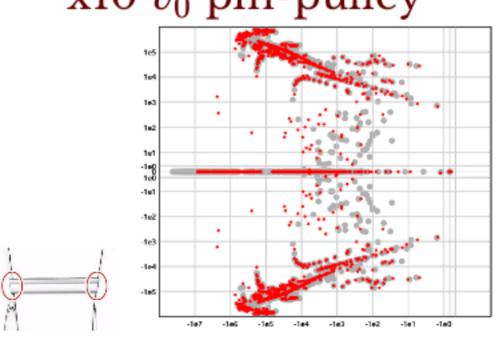
Jacobian eigenvalue analysis



Jacobian eigenvalue analysis





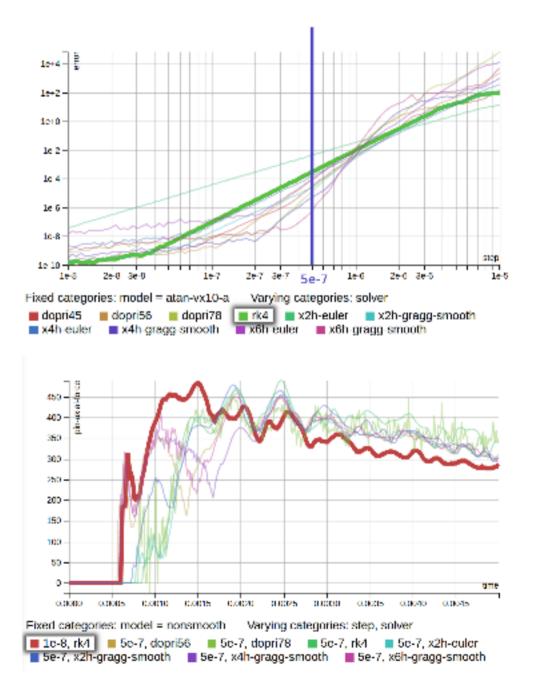


Exploring numerical methods

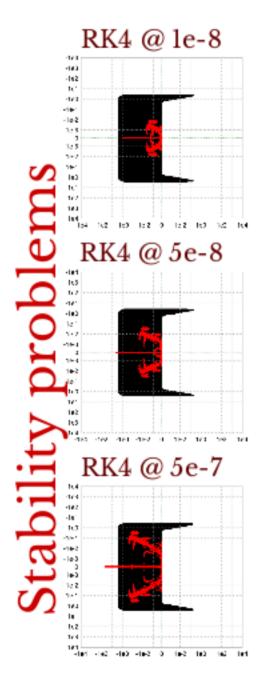
- Explicit methods
 - Easily implemented
 - Step size limited by stability requirements
 - But stability region can be extended...
- Semi-implicit methods
 - Require system Jacobian or its approximation
 - Linear system(s) at time step
- Completely implicit methods
 - Require system Jacobian or its approximation
 - Nonlinear system(s) at time step

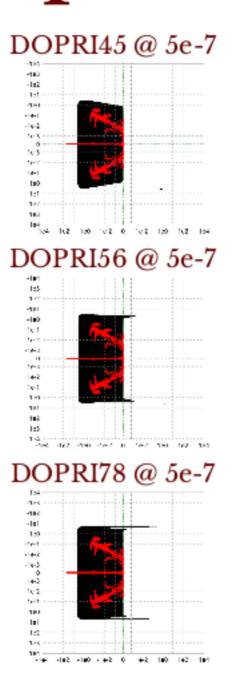
Explicit methods

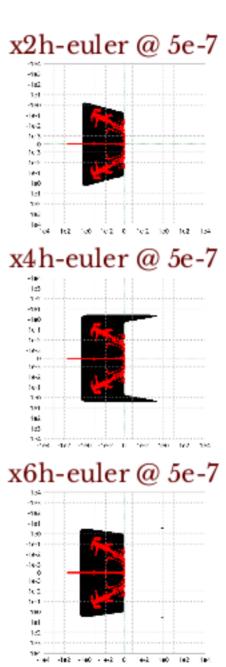
- Common RK schemes
- Stability problems RK4
 - DOPRI45
 - DOPRI56
 - DOPRI78
 - GBS (smoothed)
 - Extrapolated Euler

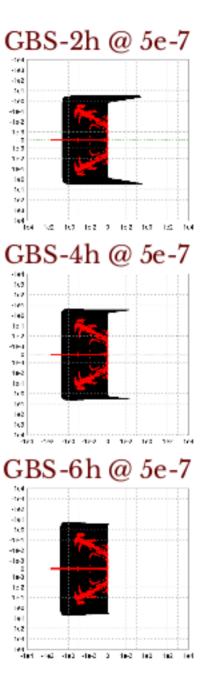


Explicit methods



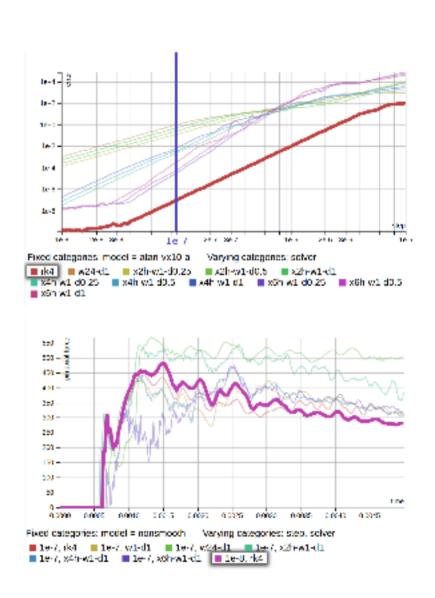




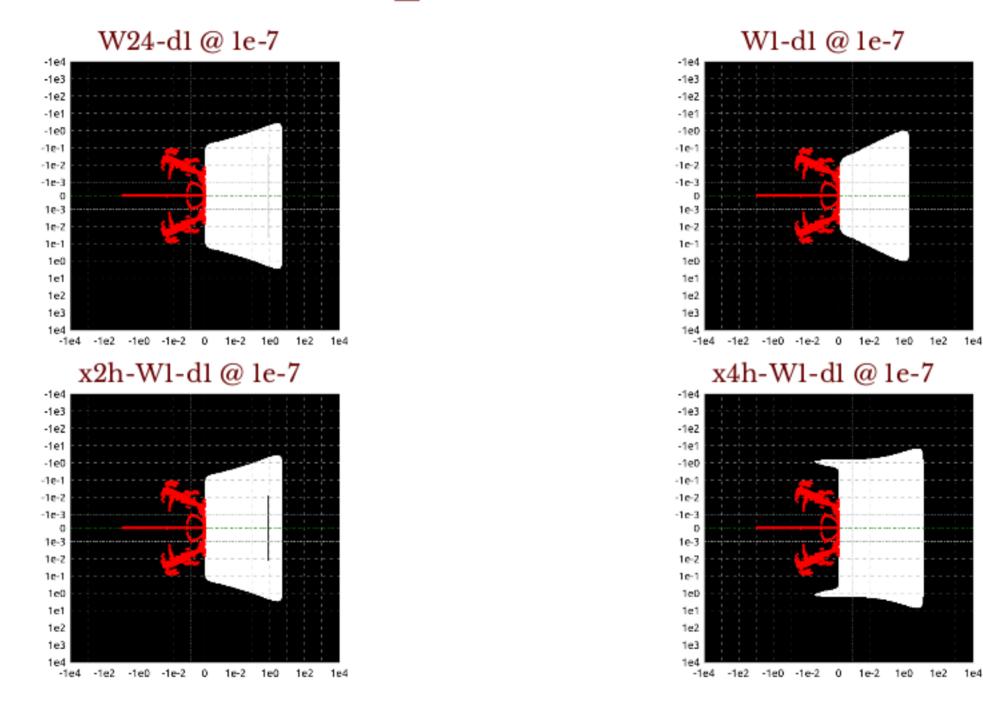


Semi-implicit methods

- Rosenbrock
 - Requires ODE RHS Jacobian
 - Jacobian is expensive
 - too slow (?)
- W-methods
 - Reuse Jacobin across steps
 - Could work quite fast
 - Schemes
 - W1, SW2-4, X-SW1
 - Accuracy problems



Semi-implicit methods



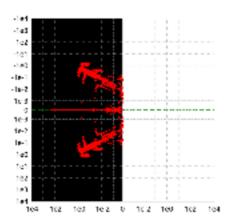
Maybe stability diagrams for W-methods are not representative

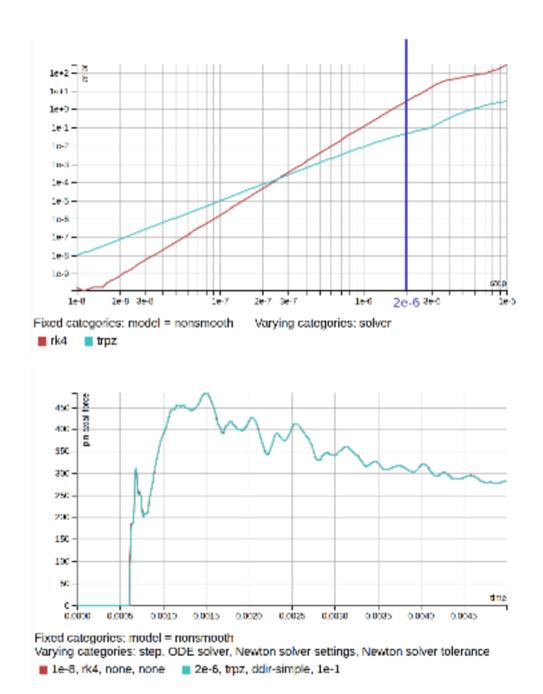
Trapezoidal rule

- Excellent results at $h = 2 \cdot 10^{-6}$
- Convergence problems at larger steps
- Lots of things to tweak in nonlinear solver
 - How to compute Jacobian
 - Recompute rarely
 - Update to have superlinear convergence
 - How to do linear search
 - How to predict initial guess
 - How to regularize equation
- Still too slow w/o specialized code for Jacobian

Trapezoidal rule

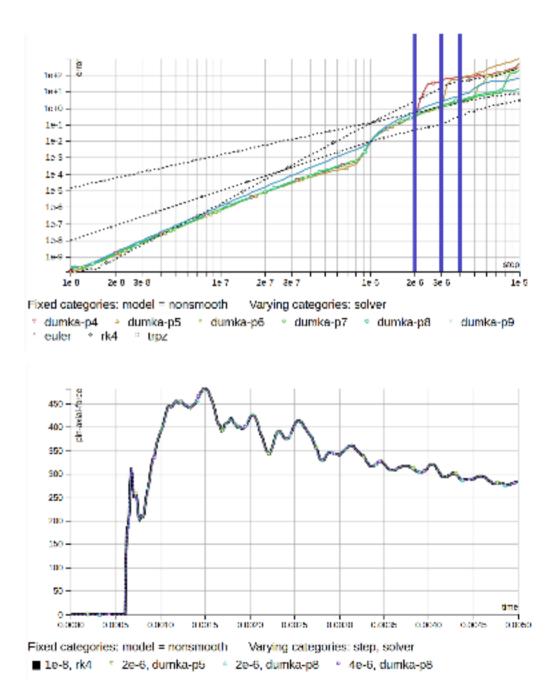
- Sample curve at $h=2\cdot 10^{-6}$ is the same as the "exact" solution (RK4, $h=2\cdot 10^{-8}$)
- Potentially, h could be greater, up to 10^{-5}
 - But this requires step size control



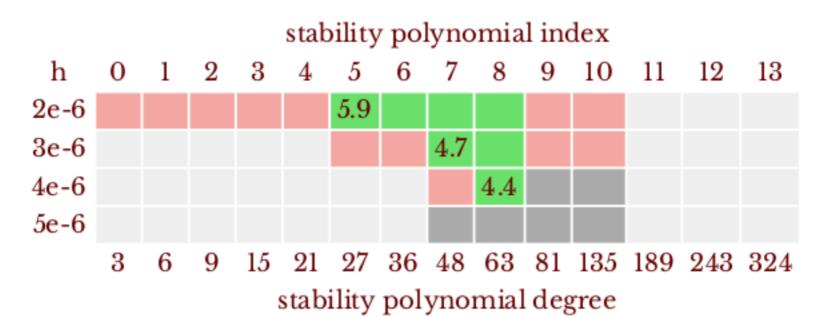


Stabilized explicit RK: DUMKA3

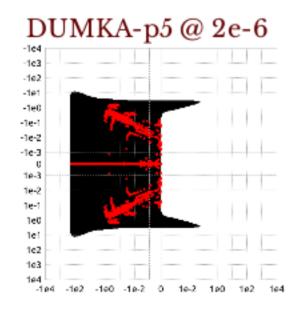
- Excellent results at h up to $4 \cdot 10^{-6}$ (sample curve same as the "exact" solution)
- 5.9x practical speedup (DUMKA-p5 @2e-6 vs RK4 @5e-8)
- Had to disable original step size
 & polynomial order control
 - Not ready for production

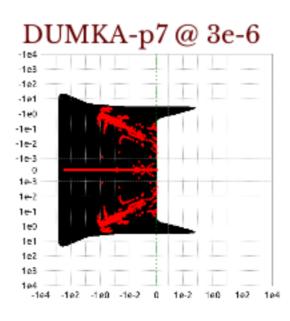


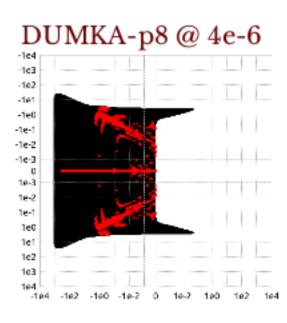
Stabilized explicit RK: DUMKA3



bad good failed untested







Future work

- Parallelization
 - Optimize & parallelize inertia matrix decomposition
 - Improve scalability of forces calculation
- Numerical integration
 - Maybe try multistep methods
 - Develop code to evaluate ODE RHS Jacobian faster
- Both
 - Parallelize numerical integration algorithms, if possible

Conclusions

- Parallelization
 - Chain forces scale better within one CPU
 - There are more things to do (Amdahl's law is still here)
 - Total speedup 2.8x (6 threads), 3.3x (12 threads)
- Numerical methods
 - Only DUMKA3 is faster @ given accuracy than RK4
 - W-methods didn't work at all :(
 - Implicit will be faster when J is computed faster
 - There are more methods to try
 - Total speedup 5.9x with DUMKA3
- Both
 - ~19x cumulative speedup (estimated)
 - There are things to do

Thank you Questions?