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In upcoming many-core architectures, the cache coherence problem remains an important
challenge, as traditional hardware schemes are not always sufficient to maintain coherence at
current high degrees of parallelism. Recent research efforts [1–3] have shown that software-
managed coherence is an all-sufficient approach per se both for the emerging hybrid software-
hardware coherence schemes and current non-cache-coherent architectures with purely software
support for partitioned shared memory. Furthermore, the compilers and runtime systems based
on partitioned global address space model can automatically control data transferring, thus
eliminating overall memory complexity from the user.

The specific contributions of this paper are to provide a number of compiler related consid-
erations towards maintaining cache coherence through the sequential source-to-source transfor-
mations of X10 programs. Proposed multi-tiered approach includes (1) high-level optimizations
of X10 AST (Abstract Syntax Tree), (2) optimizations at the level of the resulting Native X10
code, namely source-to-source C++ translation, and, last but not least, (3) runtime optimiza-
tion, including the level of the X10 coherence protocol (most promising studies for the third
level now left for future work). At the first level, the previously developed chain based on X10
and ROSE compiler infrastructure [4] was used as a mid-end to provide a set of APIs, han-
dle input sources and implement optimizations. The principle of this connection is that X10
compiler parser constructs an AST from X10 sources, then resulting tree is transformed into
ROSE AST, that also supports APGAS-specific nodes like async/at/finish. At this point, the
first-level optimizations developed within the framework of this work contribute to the efforts
being made in paper [4] by reusing loop unrolling, live variable and use-def analysis that ROSE
provides. At the final stage of the first level, the unparser produces the faster code, namely C++
back-end, using the appropriate X10RT implementation, e.g. TCP/IP sockets, standalone host
or MPI. Managed X10, i.e. alternative Java back-end, is not considered here due to some degree
of uncertainty regarding the Java support of shared memory exceeding 3Tb per node. Unfor-
tunately, the machine-generated code derived from the first level can be suboptimal, because
the native X10 compiler on several occasions can omit a number of optimization opportunities,
as confirmed by authors of the X10/ROSE connection [4]. Due to lack of machine-generated
C++ optimizations, the second level optimizations of proposed approach are implemented as
an entire compiler which is back-end for x10c++ compiler (i.e. native X10 in this case) and
is a front-end for system C++ compiler. Allocating C++ optimizations to a separate (second)
level allows to implement an increased set of optimizations for any (A)PGAS code on multi-
ple architectures. This paper investigates the limited application of the algorithm of coherence
instructions generation using parallel region analysis, presented in the work [3].

Early-stage experimental results are reported to show the correctness of the previously
mentioned optimizations, at least maintaining unchanged or improving the performance of the
optimized code. In this paper, the widely-studied hydrodynamics proxy application LULESH 2.0
was used to compare overall performance after the first and second level optimizations with the
results of the reference non-PGAS implementations. As LULESH is representative for the wide
range of current scientific HPC applications, it has been redesigned in co-design efforts to support
multiple programming models (e.g. hybrid MPI/OpenMP, Charm++, Chapel, MPI/UPC++,
X10, etc.) [5] on target systems like BG/Q and Cray XE6. In this paper, the original C++, X10
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port and optimized X10 code of LULESH are compared to estimate the Grind Time, which is
average per-element time (in microseconds) required to update the solution variables through
one time increment. For this purpose, the ccNUMA machine with up to 12Tb logically indivisible
memory was used with scheduling one place per NUMA node. Despite the fact that in the target
system the basic cache coherence is provided through the hardware directory based protocol,
satisfactory performance of such systems with up to 24Tb RAM will inevitably require a hybrid
scheme implying the co-existence of both hardware and, as its superstructure, software cache
coherence support. Table 1 compares the preliminary results of the optimized code with the
reference version and demonstrates that transformed LULESH exhibits superior Grind Time to a
reference code. Despite the minor reported changes in this primary metric, the results presented
show that the toolchain under study is fully functional, and thus X10 programs transformations
can be considerably extended, giving priority to the second and third levels of the approach.

Table 1. LULESH Grind Time on target ccNUMA system (lower is better)

LULESH models Grind time (µs/z/c)

Original C++ (hybrid MPI/OpenMP) vs. X10 port (reference code) 3.74/3.85

(+) X10 port optimizations in ROSE (first level) 3.61

(+) Native X10 optimizations (second level) 3.54

Future work will investigate the opportunities to introduce APGAS-specific optimizations at
the second and third levels of the presented approach, e.g. an implementation of novel techniques
for transferring pointered data structures via shared memory shown in a recent paper [1]. In
the context of software-managed coherence, a topic of long-run future work will be to explore
the opportunities for improving not only performance, but also fault tolerance of APGAS/X10
programs.
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