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Abstract. Workflows is an important class of parallel applications that
consist of many tasks with logical or data dependencies. A multitude
of scheduling algorithms have been proposed to optimize the workflow
execution in heterogeneous computing systems. However, in order to be
efficiently applied in practice, these algorithms require accurate estimates
of task execution and communication times. In this paper two modifica-
tions of the well-known HEFT algorithm are investigated that use sim-
ulation instead of simple analytical models in order to better estimate
data transfer times. The results of experimental study show that the
proposed approach can improve makespan for data-intensive workflows
with high parallelism and communication-to-computation ratio.
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1 Introduction

Heterogeneous computing systems (HCSs) composed of different computational
units or standalone resources, which can be local or geographically distributed,
are widely used nowadays for executing parallel applications. Workflows [14] is
an important class of such applications that consist of many tasks with logical
or data dependencies which can be modeled as directed acyclic graphs (DAGs).

The efficiency of executing workflows in HCS critically depends on the meth-
ods used to schedule the workflow tasks, i.e. decide when and which resource
must execute the tasks of the workflow. The main objective is to minimize the
overall completion time or makespan subject to possible additional constraints
such as meeting a deadline or using a fixed budget. In comparison to homoge-
neous systems, the task scheduling problem in HCS is more complicated because
of the different execution rates of individual resources and different communica-
tion rates of links between these resources.

The DAG scheduling problem has been shown to be NP-complete [9], even
for the homogeneous case. This makes it practically impossible to obtain the
optimal schedule even for the simplest formulations of practical interest. There-
fore the research effort in this field has been mainly to obtain low complexity
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heuristics that produce good schedules. Since the late 1990s and until now, a
multitude of workflow scheduling algorithms [18] based on different heuristics
and metaheuristics have been proposed. However, in order to be efficiently ap-
plied in practice, these algorithms require accurate estimates of task execution
and communication times.

In this paper we focus on the accuracy of models used for estimation of data
transfer times. The presented experimental results provide a strong evidence
against the widely used approach based on simple Hockney’s model [11] that
disregard network topology and bandwidth allocation. The schedules produced
by static algorithms using this model clearly demonstrate that even for the mod-
estly parallel workloads with sufficiently large data items the effect of competing
data transfers may lead to the drastic underestimation of the communication
time and the makespan degradation.

To address this issue we propose to incorporate simulation inside a work-
flow scheduling algorithm in order to improve the data transfer time estimates.
Simulation, involving computer modeling of the process of application execu-
tion in HCS, has been actively used in scheduling algorithm research. The main
advantage of simulation in comparison to the real-world experiments is the abil-
ity to perform a statistically significant number of experiments in a reasonable
amount of time while ensuring the reproducibility and having moderate hard-
ware resource requirements. However, while being widely used to evaluate the
scheduling algorithms, the simulation has been rarely used inside the algorithms.

In this paper we investigate the use of more accurate simulation models in-
stead of simple analytical models inside a workflow scheduling algorithm. Two
modifications of the well-known HEFT algorithm [15] are proposed that use
simulation in order to estimate data transfer times. The proposed modifications
are compared with original HEFT and other scheduling algorithms using the
developed simulation framework. The obtained experimental results show that
the proposed approach can improve the makespan for workflows with high par-
allelism and communication-to-computation ratio.

The paper is structured as follows. Section 2 describes the used system and
application models along with the used simulation framework. Section 3 provides
an overview of HEFT algorithm and presents the proposed algorithm modifica-
tions. Section 4 presents and discusses the results of simulation experiments.
Section 5 concludes and discusses future work.

2 Simulation Framework

To study the workflow scheduling algorithms in this paper we use simulation by
modeling the process of application execution in a distributed computing sys-
tem. In comparison with the full-scale experiments on real systems, simulation
allows to significantly reduce the time needed to run an experiment and to ensure
the reproducibility of produced results, while having moderate requirements to
the used hardware resources. However, when using simulation it is important to
ensure the accuracy, i.e. minimal deviation from the results of real-world exper-
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iments, and the scalability, i.e. the ability to conduct large-scale experiments, of
the used simulation model.

The simulation model used in this paper is implemented on the base of Sim-
Grid1 [6], a simulation toolkit for studying the behaviour of large-scale dis-
tributed systems. The toolkit provides the required fundamental abstractions
for the discrete-event simulation of parallel applications in distributed environ-
ments. The choice of SimGrid was motivated by the maturity of the toolkit,
the soundness and high level of verification of embedded models, and the active
support of developers. An important factor is also the versatility of the toolkit
that allows one to simulate grids, cloud infrastructures, peer-to-peer systems and
MPI applications.

Many studies also used WorkflowSim [7], an open source toolkit for simu-
lating scientific workflows based on CloudSim simulator. We avoided the use of
WorkflowSim as it has been shown that CloudSim among other simulators has
flaws in its network model [17].

The heterogeneous computing system is modeled as a set of hosts and network
links between them as depicted on Figure 1. Each host is characterized by its
performance expressed in FLOPS. In this study it is assumed that each host can
process a single task at a time. The execution of any task is considered non-
preemptive. Network links are characterized by their bandwidth and latency.

root

end

task1

task2

task3

bytes
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Network
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bandwidth
latencyperformance

(FLOPS)
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Fig. 1. Workflow and heterogeneous computing system models.

While the simulation is widely used to assess scheduling algorithms, the re-
searchers often neglect the accuracy of the used models, especially network ones.
In particular, in many papers authors assume a contention-free network model
in which a network host can simultaneously send to or receive data from as many
hosts as possible without experiencing any performance degradation. However,

1 http://simgrid.gforge.inria.fr/
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this model is not representative of real world networks. In this study we use the
bounded multiport model provided by SimGrid. In this model, a host can com-
municate with several other hosts simultaneously, but each communication flow
is limited by the bandwidth of the traversed route, and communications using a
common network link have to share bandwidth. This scheme corresponds well to
the behavior of TCP connections on a LAN. The validity of this network model
has been demonstrated in [16].

SimGrid supports simulation of various network topologies including hierar-
chies and combinations of autonomous systems with different internal routing
strategies. In this study we consider systems with a simple topology where each
host is connected to a central backbone via a dedicated link as depicted on Fig-
ure 1, and a route between any two hosts contains the two respective links. The
backbone, which can correspond to the LAN switch or the WAN, doesn’t impose
additional latency or bandwidth constraints in this model. Therefore the rate of
communication between any pair of hosts is determined only by characteristics
of the corresponding pair of links.

The workflow application is modeled as a directed acyclic graph (DAG),
whose vertices correspond to individual tasks and directed edges represent the
data dependencies between tasks as depicted on Figure 1. Each vertex is char-
acterized by its size, i.e. the amount of computations in flops associated with
the corresponding task. Similarly, each edge is characterized by the amount of
communication in bytes between the corresponding pair of tasks. The size of
task input data equals to the sum of sizes of incoming edges.

The two special tasks with zero size are introduced in order to model the
staging of workflow input and output data. The root task passes the input data
to the initial tasks, i.e. those that do not depend on other workflow tasks. The
end task receives the output data from the final tasks, i.e. those that do not pass
their data to other workflow tasks.

The root and end tasks are executed on a dedicated host called master, which
does not participate in computations. This host corresponds to the machine,
which stores the input data and where the output data should be placed after
the application execution. In practice, this host often performs submission and
management of the workflow.

While the SimGrid toolkit has been used previously for studying workflow
scheduling algorithms [12, 2], to the best of our knowledge there are no published
open source implementations of such algorithms for SimGrid. Therefore we have
implemented a number of well-known static and dynamic algorithms, such as
HEFT [15], HCPT [10], Lookahead [5], PEFT [1], OLB [3], MCT [13], MinMin
[8, 13], MaxMin [8, 13] and Sufferage [13], following their original papers.

To simplify the implementation of scheduling algorithms for our experiments
we have developed a pysimgrid library2. This library implements a thin wrapper
around the native SimGrid API and provides a convenient interface for devel-
opment of scheduling algorithms in Python language. The library also includes

2 https://github.com/alexmnazarenko/pysimgrid
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auxiliary tools for generation of synthetic systems and workflows, batch execu-
tion of simulation experiments and analysis of simulation results.

3 Modifications of HEFT Algorithm Using Simulation

3.1 HEFT Overview

Heterogeneous Earliest Finish Time (HEFT) [15] is probably the most cited
workflow scheduling algorithm. Being relatively simple and proved to be con-
sistently more efficient than other algorithms, HEFT is commonly used as a
reference for evaluation of new algorithms.

HEFT can be described as a variant of static list scheduling algorithms that
prioritize tasks having the most influence on the total workflow execution time
(makespan). Such algorithms operate in two phases. During the first phase the
algorithm computes the rank of each task according to some criterion that takes
into account the position of the task in the DAG, its dependencies, etc. The
output of the ranking phase is a list of tasks sorted by their rank. During the
second phase the algorithm iterates over the list and assigns each task to a host
that minimizes some criterion, for example task completion time.

The rank of a task Ti in HEFT is recursively defined by

rank(Ti) = EET (Ti) + max
Tj∈succ(Ti)

(
ECOMT (dataij) + rank(Tj)

)
, (1)

where EET (Ti) is the average execution time of the task across all hosts,
succ(Ti) is the set of immediate successors of the task, ECOMT (cij) is the
average communication time corresponding to the transfer of dataij bytes via
edge (i, j).

The EET (Ti) is computed by averaging the estimated execution time EET (Ta, Hi)
of a task on each host Hi which is assumed to be known beforehand. In our model
we compute accurate estimates using the task size and host performance.

The ECOMT (dataij) is computed in HEFT using the Hockney’s model [11]
as

ECOMT (dataij) = L +
dataij

B
, (2)

where L is the average latency and B is the average bandwidth of communication
links between the hosts in the system.

The tasks in HEFT are scheduled in decreasing order of their rank. Each
task is scheduled to a host with a minimum estimated completion time

ECT (Ti, Hj) = EST (Ti, Hj) + EET (Ti, Hi) , (3)

where EST (Ti, Hj) is the earliest start time of the task on a given host

EST (Ti, Hj) =

max {avail(Hj), max
Tk∈pred(Ti)

(ECT (Tk, Hk) + ECOMT (dataki, Hk, Hi))} , (4)
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where avail(Hj) is the earliest time the host is ready for task execution, pred(Ti)
is the set of immediate predecessors of the task.

Note the important feature of the rank function — it defines a valid topo-
logical order for the tasks. All tasks are scheduled after their parents, so it is
possible to compute the required estimates of parent tasks’ completion and com-
munication times.

The communication time between tasks Ti and Tj running on hosts Hi and
Hj respectively is computed as

ECOMT (dataij , Hi, Hj) = Lij +
dataij
Bij

, (5)

where Lij and Bij are the latency and the bandwidth of the link between the
given hosts.

3.2 Modified HEFT Versions

The simple linear model used in HEFT to estimate communication times doesn’t
take into account network topology and bandwidth allocation. A shown in Sec-
tion 4, even for the modestly parallel workflows with sufficiently large data de-
pendencies the effect of competing data transfers may lead to the drastic underes-
timation of the communication time and the degradation of HEFT performance.
This is due to the fact that the inaccurate estimates of ECOMT (dataij , Hi, Hj)
lead to inaccurate estimates of ECT (Ti, Hj), and these inaccuracies accumulate
during the scheduling of subsequent tasks. The ranking function also doesn’t
take into account the bandwidth contention by using a simple ECOMT (dataij)
estimate.

To address this problem we modified HEFT to use simulation instead of
analytical models to improve the used estimates. The proposed HEFT modifica-
tion, hereinafter referred as SimHEFT, uses the same ranking phase as HEFT.
However, during the task assignment phase SimHEFT uses simulation instead
of analytical models to compute ECT (Ti, Hj). For each host Hj , the execution
of the workflow subgraph including already scheduled tasks and the current task
Ti assigned to Hj is simulated. Note that these simulations are independent
and, therefore, can be run in parallel. Then the task is scheduled to a host that
corresponds to a minimum task completion time observed in simulations.

We also have tried to change the criterion used for selection of hosts during
the task scheduling. Indeed, by optimizing the completion time of individual task
it is possible to significantly degrade the completion times of already scheduled
tasks due to the communication interference. The SimHEFT* variant schedules
each task on a host that minimizes the overall makespan of currently scheduled
subgraph instead of the task completion time. The intuition behind this variant
is to minimally degrade the overall makespan during the scheduling of individual
tasks.

The main advantage of the proposed approach is the minimal modification
of the original algorithm. However, it is not clear without the experimental
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evaluation whether it is sufficient to improve only the task assignment phase
while keeping the original ranking function and task scheduling order. Another
concern is the additional overhead of simulation that can significantly increase
the algorithm execution time. Note, however, that the proposed modifications
allow running multiple simulations in parallel during the task assignment phase.

4 Experimental Evaluation

In this section we present the results of simulation experiments that compare
the performance of proposed HEFT modifications with original HEFT and other
workflow scheduling algorithms for a range of workflow and system configurations
using the described simulation framework.

Besides HEFT we used two well-known dynamic algorithms - OLB and MCT.
Opportunistic Load Balancing (OLB), which is widely used in modern HCSs,
assigns available tasks to resources currently being idle without any a priori infor-
mation about tasks. Minimum Completion Time (MCT) assigns each available
task to a resource that is expected to finish the task the earliest.

We use the makespan, i.e. the measured total run time of a workflow in a given
system according to a schedule produced by an algorithm, as the basis for com-
parison of algorithm performance. For each simulated pair system-application
we run all algorithms and then normalize their makespans by the makespan
achieved by the simplest algorithm - OLB. Finally, to reduce the variance, we
compute the mean of normalized makespans across all simulations.

The experiments use a fixed set of workflows while varying the system char-
acteristics. The used workflows are based on real world scientific applications
[4]:

– LIGO Inspiral: analyses and filters the time-frequency data from the Laser
Interferometer Gravitational Wave Observatory experiment (LIGO);

– Epigenomics: automates various genome sequencing operations (USC Epigenome
Center);

– Montage: stitches together multiple images of the sky to create large-scale
custom mosaics (NASA/IPAC);

– CyberShake: characterizes earthquake hazards in a region (SCEC).

The simulated systems have 5, 10 or 20 hosts with performance varying in a
range of 1 to 4 GFlops. The network links have identical characteristics selected
to be close to the Gigabit Ethernet network (bandwidth: 100 MBytes/sec, la-
tency: 100 µs). For each host count 100 distinct systems are randomly generated.

The mean normalized makespans achieved by each algorithm in the experi-
ments are presented in Table 1.

As it can be seen, HEFT outperforms the dynamic algorithms for the LIGO,
Epigenomics and Montage workflows. The maximum speedup achieved in com-
parison to OLB varies among the workflows due to the different amount of
inherent parallelism. However, for the CyberShake workflow both dynamic algo-
rithms show similar results and outperform HEFT. The analysis of this workflow
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Table 1. Mean normalized makespan

Hosts count OLB MCT HEFT SimHEFT SimHEFT*

LIGO Inspiral, 100 tasks

5 1.0000 0.9839 0.9651 (0.9608) 0.9652 1.0229

10 1.0000 0.9182 0.8792 (0.8602) 0.8791 1.0338

20 1.0000 0.7885 0.6898 (0.6865) 0.6898 0.9384

Epigenomics, 100 tasks

5 1.0000 0.9753 0.9376 (0.9311) 0.9376 0.9368

10 1.0000 0.9014 0.8459 (0.8405) 0.8458 0.8437

20 1.0000 0.7942 0.7093 (0.6740) 0.7099 0.7067

Montage, 100 tasks

5 1.0000 0.9791 0.9769 (0.9683) 0.9766 0.9766

10 1.0000 0.9639 0.9635 (0.9478) 0.9629 0.9636

20 1.0000 0.9109 0.9165 (0.9023) 0.9156 0.9172

CyberShake, 100 tasks

5 1.0000 1.0104 1.0616 (0.5074) 1.0760 1.0395

10 1.0000 0.9972 1.0846 (0.3789) 1.1354 1.0325

20 1.0000 0.9845 1.1038 (0.2958) 1.3803 1.0244

revealed that it has two distinguishing properties — high parallelism and high
communication-to-computation ratio (CCR). This could lead to a network con-
tention resulting in a significant mismatch between the simple network model
used in HEFT for estimation of ECOMT and the accurately modeled network
in the simulator.

To confirm this hypothesis, we obtained the estimated makespan from the in-
ternal state of HEFT. These values, normalized to the simulated OLB makespan,
are presented in brackets after the simulated HEFT makespan in Table 1. As
it can be seen for the CyberShake workflow, HEFT expects to achieve a dras-
tically different makespan than the one produced after the simulation. Ignoring
the network contention effect resulted in more than 200% error in the makespan
estimation. This result emphasizes the importance of accurate estimations of
communication times during the workflow scheduling.

As for SimHEFT, it fails to improve the HEFT makespan for the Cybershake
workflow while having a similar performance for other workflows. Contrary to
expectations, SimHEFT behaves even worse than HEFT on Cybershake by show-
ing up to 25% makespan degradation. We hypothesize that by optimizing the
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completion time of individual task it is possible to significantly degrade the com-
pletion times of already scheduled tasks due to the communication interference.

The SimHEFT* results confirm the above hypothesis. The results from Ta-
ble 1 show that SimHEFT* was able to improve the Cybershake makespan by 2-
7% in comparison to HEFT while having a similar performance for Epigenomics
and Montage. However, SimHEFT* behaves significantly worse than HEFT and
SimHEFT on the LIGO workflow. This can be explained by the fact that this
workflow has the lowest CCR ratio and therefore is less sensitive to errors in
estimated communication time. In this case the modified scheduling criterion
doesn’t bring any improvements over the original criterion and, as it can be
seen, can even worsen the schedule.

While improving the Cybershake makespan, SimHEFT* is still up to 4%
worse than dynamic MCT algorithm. This could indicate that it is not sufficient
to improve only the task assignment phase while keeping the original HEFT
ranking function and task scheduling order intact.

5 Conclusion and Future Work

In this paper we have investigated the use of simulation instead of simple analyt-
ical models inside a workflow scheduling algorithm to improve the estimation of
communication times. Two extensions of the well-known HEFT algorithm that
use simulation during the task assignment phase have been proposed. The exper-
imental study of proposed modifications showed that it is not sufficient to simply
plug simulation into the HEFT assignment phase (SimHEFT variant). However,
by modifying the host selection criterion it is possible to improve the makespan
for workflows with high parallelism and communication-to-computation ratio
(SimHEFT* variant). As was demonstrated, such workflows suffer the most from
inaccurate estimations of simple analytical models.

While it is demonstrated that the proposed approach have some potential,
there are remaining challenges and room for improvement. The SimHEFT* vari-
ant is still behind simple dynamic algorithms for Cybershake and doesn’t work
well for workflows with low CCR ratio. The possible improvements here in-
clude modifications of the ranking phase and adapting the algorithm behaviour
depending on the CCR ratio. The use of simulation significantly (up to two or-
ders) increased the scheduling time. However, it is possible to decrease this time,
e.g. by running the simulations in parallel during the task assignment phase. We
plan to address the mentioned challenges in the future work and to perform an
extended experimental study across a wide range of synthetic workflows.
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