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Abstract. This paper is dedicated to the development of the architecture of spe-

cialized GPU clusters that can be used as computing systems in medical ultra-

sound tomographic facilities that are currently being developed. The inverse 

problem of ultrasonic tomography is formulated as a coefficient inverse prob-

lem for a hyperbolic equation. An approximate solution is constructed using an 

iterative process of minimizing the residual functional between the measured 

and simulated wave fields. The algorithms used to solve the inverse problem are 

optimized for a GPU. The requirements for the architecture of a GPU cluster 

are formulated. The proposed architecture accelerates the reconstruction of ul-

trasonic tomographic images by 1000 times compared to what is achieved by a 

personal computer. 

Keywords: Ultrasonic tomography · Coefficient inverse problems · Finite-

difference time-domain (FDTD) method · GPU clusters · Medical imaging. 

1 Introduction 

This paper focuses on using specialized supercomputers for medical ultrasonic to-

mography imaging. The primary application is the differential diagnosis of breast 

cancer. The development of ultrasonic tomographу devices is currently at the proto-

type stage [1–3]. One of the most difficult problems in designing ultrasonic tomo-

graphic scanners is that the inverse problems of high-resolution wave tomography are 

nonlinear and have a very large number of unknowns — up to 10
8
. The experimental 

data gathered in one examination amounts to approximately 5 GB. Solving such prob-

lems using precise mathematical models that take into account the diffraction, refrac-

tion and absorption of ultrasonic waves can be carried out only with the help of pow-

erful modern supercomputers. 

However, a general-purpose supercomputer cannot be included as a part of a 

tomographic setup. The aim of this study is to develop the architecture of specialized 

supercomputers for medical ultrasonic tomography. A specialized supercomputer 

should have an energy consumption not exceeding 10–20 kW and should fit into a 
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single rack. This specialized supercomputer should be optimized for the most effec-

tive implementation of the iterative gradient method developed in the authors' previ-

ous works [4–8]. Preliminary studies have shown that the optimal choice for this task 

is a GPU cluster. Using modern hardware, it is possible to design a specialized GPU 

cluster, which can be included in an ultrasonic tomography facility. 

2 Formulation of the Inverse Problem of Ultrasonic 

Tomography 

A simple mathematical model that takes into account the ultrasound diffraction and 

absorption effects is a scalar wave model based on a second-order hyperbolic equa-

tion. In this model, the acoustic pressure u(r,
 
t) satisfies the equation: 

 )()()()()()()( tft,ut,uat,uc ttt qrrrrrr , (1) 

 0)0(0)0( t,u,t,u t rr , )()( ST t,p|t,un rr . (2) 

Here, c(r)
 
=
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/
 
v

2
(r), where v(r) is the speed of sound in the medium, 3

Rr  is the 

point in space, a(r) is the absorption coefficient, and Δ is the Laplace operator with 

respect to r. The sounding pulse generated by the point source at q is described by the 

function f
 
(t); ∂nu(r,

 
t)|ST is the derivative along the normal to the surface S of the do-

main Ω, where (r,
 
t) S×(0,

 
T); the function p(r,

 
t) is known. The conditions (2) repre-

sent the boundary and initial conditions. It is assumed that v(r) = v0 = const, a(r) = 0 

outside of the studied object. This simple model of wave propagation (1) can be used 

to describe ultrasonic waves in soft tissues. 

 
Fig. 1. The scheme of the experiment.     Fig. 2. Waveform of the sounding pulse. 

Fig. 1 shows a typical scheme of the tomographic experiment. The studied object 

G is located inside the region Ω. For simplicity, we assume that the domain Ω is a 

cube of height H. The free space L is filled with water with a known sound speed v0. 

The sources are located on the boundary S of the domain Ω in several planes: h1, h2, 

h3. The detectors can be located on the side and bottom faces of the cube Ω. In ultra-
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sound mammography applications, sources and detectors cannot be located on the 

upper side; thus, this is an incomplete-data tomography problem [6]. 

Let us consider the inverse problem of reconstructing the unknown coefficients 

с(r) and а(r) in equation (1), given that the acoustic pressure U(s,
 
t) is measured at the 

points s of the boundary S for the time interval (0; T). The value of T is chosen to be 

large enough (~250 μs) so that all the waves passing through and reflected from the 

object are registered by the detectors. The measurements are performed for source 

positions q. Fig. 2 shows a typical waveform of sounding pulses f
 
(t) emitted by the 

sources. For low-frequency acoustic tomography in the 500 kHz band, the duration of 

the pulses is 3–10 μs. The low-frequency approach allows to use a much smaller 

number of sources but requires precise measurements and a precise mathematical 

model [5]. 

The exact solution of the inverse problem includes the coefficients c(r), a(r), 

which, when substituted into equations (1)–(2), produce the wave field u(r,
 
t) equal to 

the measured wave field U(s,
 
t) at the detector points s. Because the inverse problem 

is ill-posed, we formulate it as a problem of minimizing the residual functional with 

respect to its argument (c, a): 

 dtdt,U,tua,сu

S

T

sss
2

0

))()((
2

1
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Here, U(s,
 
t) is the acoustic pressure measured on the boundary S for the time interval 

(0, T); u(r,
 
t) is the solution of the direct problem (1)–(2) for the given c(r) and a(r). 

We use the gradient method to minimize the residual functional (3). Representa-

tions of the gradient Φ′(u(c,a)) in various formulations were obtained in [7,8]. In [9] 

and [10], expressions for the gradient in the time-domain formulation were derived. 

The gradient Φ′(u(c,a)) ={Φ'c(u), Φ'a(u)}, representing the linear part of the increment 

of the functional Φ(u(c,a)) (3) with respect to the variation of the sound speed and the 

absorption coefficient {dc, da}, has the form: 

 

T

ttc tdt,ut,wcu

0
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T

ta tdt,ut,wau

0

)()())((Φ rr . (4) 

Here, u(r,
 
t) is the solution of the main problem (1)–(2), and w(r,

 
t) is the solution of 

some "conjugate" problem for the given c(r), a(r) and u(r,
 
t): 

 ,t,wt,wat,wc ttt 0)()()()()( rrrrr  (5) 

 0(0)( T)t,w,Tt,w t rr , U|u|wn ST ST . (6) 

At the points of the boundary S where no measured data are present, the boundary 

condition ∂nw|ST = 0 is applied. To calculate the gradient Φ′ ={Φ'c(u), Φ'a(u)} using 

formula (4), it is necessary to solve the direct problem (1)–(2) and the "conjugate" 

problem (5)–(6). With the calculated gradient, we can use various iterative algorithms 

to minimize the residual functional (4). 
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3 Numerical Algorithms for Solving Inverse Problems of Low-

Frequency Ultrasonic Tomography 

We use the finite-difference time-domain (FDTD) method to solve problems (1)–(2) 

and (5)–(6) numerically. Let us introduce a uniform discrete grid for the spatial coor-

dinates (x, y, z) at the time t:  xi =ih,  yj =jh,   zl =lh,   tk =kτ; i, j, l=1,...,N, k=1,...,M, 

where h is the grid step, and τ is the time step. To approximate equation (1), we use 

the following second-order finite-difference scheme: 
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Here, 
k
ijlu  are the values of u(r,

 
t) at the point (i,j,l) at the time step k; сijl and aijl are 

the values of c(r) and a(r) at the point (i,j,l). The first term in (7) approximates 

c(r)utt(r,
 
t), and the second term approximates a(r)ut(r,

 
t). The discrete Laplacian is 

denoted by k
ijlu . It is computed using the formula: 
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The bijl coefficients were presented, for example, in [11]. The parameters h and τ for 

the three-dimensional problem are connected by the Courant-Friedrichs-Lewy (CFL) 

stability condition: c/h 3 . Collecting the terms with 1k
ijlu  in (7), we obtain an 

explicit finite-difference scheme for the wave equation (1). A similar scheme is used 

for equation (5). To solve the direct problem (1)–(2), non-reflecting boundary condi-

tions [12] are applied at the boundary of the computational domain. 

The components of the gradient of the residual functional are computed using the 

formulas: 
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where M is the number of time steps. 

The iterative gradient descent algorithm is used to minimize the residual function-

al. As initial approximations for c(r) and a(r), we use c
(0)

=c0=const, a
(0)

=0. These 

values correspond to the parameters of the environment. For water, c0=1500 m·s
-1

. 

The following actions are performed at each iteration (m): 

1. The initial pulse is computed. 

2. The direct problem (1)–(2) is solved, given that c(r)=с
(m)

, a(r)=a
(m)

. The acoustic 

pressure u
(m)

(r,
 
t) is calculated using formula (7). The values of u(s,

 
t) at the points 

s, where the detectors are located, are stored in memory. 

3. The residual functional Φ
(m)

=Φ(u
(m)

(r)) is computed using formula (3). 
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4. The "conjugate" problem (5)–(6) is solved to compute the wave field w
(m)

(r,
 
t). 

5. The gradient Φ'(u
(m)

) is computed using formula (9). The stages 1–5 are repeated 

for all the sources, and the values of Φ
(m)

 и Φ'(u
(m)

) are summed for all the sources. 

6. The current approximation is updated: c
(m+1) 

=
 
c

(m) 
+

 
λ

(m)
Φ'c(u

(m)
(r)), 

a
(m+1) 

=
 
a

(m) 
+

 
λ

(m)
Φ'a(u

(m)
(r)). The process returns to stage 2. 

The step of the gradient descent λ
(m)

 is chosen using a priori considerations. During 

the iterative process, the step is automatically corrected: λ
(m)

 is decreased by 1.5 times 

if Φ
(m) 

>
 
Φ

(m-1)
; otherwise, it is increased by 25%. These rates are tuned for typical 

sound speed variations in soft tissues (1400–1600 m·s
-1

). 

4 GPU Implementation of Computations for the Direct and 

Inverse Problems of 3D Ultrasound Tomography 

4.1 Specific Features of Graphics Processors 

Graphics processors have become the first widely available parallel architecture and 

are already used in ultrasonic tomography applications [3]. 

The specific feature of the GPU memory hierarchy is a very high memory perfor-

mance combined with a slow communication channel. As in most modern systems, 

the performance of arithmetic units is much higher than the memory performance. 

Graphics processors are designed for data-parallel tasks, where each of the thread 

blocks processes its own data area, for example, a part of the image that does not 

overlap with other parts. Thus, an algorithm optimized for a GPU cluster must first 

divide the problem into processes that require a relatively small amount of fast 

memory; second, it must subdivide the task for each GPU into completely independ-

ent thread blocks. 

4.2 Specific Features of the Problem and Optimization of the Algorithm 

The inverse problem of low-frequency ultrasound tomography has some specific fea-

tures that allow optimizing the algorithm and reducing the computational complexity. 

1. The main computational complexity of the algorithm lies in computing the gra-

dient of the residual functional using the formulas presented in (9), which includes 

computing the wave fields u(r,
 
t) and w(r,

 
t). Functional (3) is the sum of the squared 

differences ||U(s,
 
t)-u(s,

 
t)||

2
 for all the sources and detectors. It can be computed for 

each source separately, and the results can be added together. The gradient (4) can 

also be computed as the sum of partial gradients for each source. 

In the proposed architecture of the GPU cluster, each computing node calculates 

the gradient for one of the sources. A scheme for parallelizing the computations for 

sources S1–S6 is shown in Fig. 3. The input data for all computing nodes are the same: 

с
(m)

, a
(m) 

at the m-th iteration of the gradient descent method. The data transfers be-

tween the nodes occur only when an iteration of the gradient method is completed and 

when the current approximation is updated. 
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The total value of the gradient is computed and broadcast to all the nodes using the 

MPI_Allreduce operation. Then the new iterative approximation c
(m+1)

, a
(m+1) 

is 

computed. Various parameters of the algorithm are synchronzed via MPI_Bcast 

operations. 

 
 

Fig. 3. Parallelizing the computations for multiple sources. 

The amount of transferred data for a problem of size 400
3 
is approximately 256 MB 

(400×400×400×4 bytes) for each node in each direction. Thus, the parallelization of 

computations by sources proves to be very effective. The total overhead is a few se-

conds per minute. 

2. In medical diagnostic applications, the variance of the sound speed in soft tis-

sues does not exceed 10–15%. This allows us to estimate the volume V, in which the 

wave propagates after being emitted from the source, in advance and to perform the 

computations within only this volume. The volume V is a sphere of radius vmaxt, 

where vmax is the maximum permissible sound speed in the model, and t is the current 

simulation time. This optimization is easily accomplished using the GPU by execut-

ing only the blocks for which r
 
≤

 
vmaxt. This optimization reduces the computation 

time by 25%. 

3. The gradient of residual functional (4) is an integral over time. This means that 

to calculate the gradient, it is not necessary to store all the values of u(r,
 
t) in the 

X×Y×Z×T region, which would require a huge amount of memory. It is sufficient to 

compute u(r,
 
tk) sequentially at time steps tk. Thus, the required amount of memory is 

proportional to N
3
, and the number of operations is proportional to N

4
, where N is the 

number of grid points along one dimension. 

Taking into account these features of the ultrasonic tomography problem, we pro-

pose a two-stage method according to the scheme presented in Fig. 4. In the first stage 

("Forward-time computation"), the wave field u(r,
 
t) generated by the source S in the 

volume V is computed sequentially in time. An absorbing layer of width d and simple 

non-reflecting boundary conditions [12] are used to cancel the reflected waves. A 

typical value of d is 32 grid points. 
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Fig. 4. The scheme of GPU computations performed in two stages. 

To use the FDTD scheme (7), it is necessary to store u(r,
 
t), u(r,

 
t-1), u(r,

 
t-2), 

which amounts to 3·(N+2d)
3
 32-bit words, and the coefficients c(r) and a(r) in the 

GPU memory. The coefficients do not change over time; thus, we can use the im-

age3d structure, which enables texture caching, improving the performance by 

10%. 

Since the coefficients are unknown and determined only approximately, the 16-bit 

half data type is sufficient for their representation.The error between the exact and 

approximate solutions is ~2 m·s
-1

 for c(r), which is ~2% of |c(r)-c0|, and even worse 

for a(r) [4]. This means that such variations of the coefficients do not noticeably af-

fect the simulated ultrasound wave. Thus, a rounding error not exceeding 0.2% is 

acceptable. 

The values of u|ST at the boundary of the computational domain are stored for use 

in the second stage. Fast access to these data is not needed; therefore, we place them 

in the system RAM. The required RAM capacity is 6N
2
·T, where T is the number of 

time steps. It follows from the FDTD stability conditions that T
 
≈3N, and the amount 

of memory needed for the boundary values is 18N
3
 32-bit words. 

To compute the gradient using formula (4), we need the values of u(r,
 
t) and w(r,

 
t) 

at the same points. To start computing w(r,
 
t) from the last time step t

 
=

 
T, it is neces-

sary to compute u(r,
 
t) for all t

 
≤

 
T first. In the second stage ("Reverse-time computa-

tion"), we solve equation (1) for u(r,
 
t) and problem (5)–(6) for w(r,

 
t) simultaneously 

in reverse time. The values of u(r,
 
t) and w(r,

 
t) are computed based on u(r,

 
t+1), 

w(r,
 
t+1), u(r,

 
t+2) and w(r,

 
t+2). The boundary conditions for w(r,

 
t) are determined 

from the experimental data U(s,
 
t) by using formula (6). 
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To fill in the missing values of u(r,
 
t) at the boundary, we use the values of u|ST 

stored in the memory in the first stage. The wave field u(r,
 
t) obtained in this way is 

equal to u(r,
 
t) computed in the first stage. The recalculation of u(r,

 
t) allows us to use 

a data array of size X×Y×Z, not X×Y×Z×T. The numerical error introduced by the 

recalculation does not exceed 10
-5

, making it negligible for practical measurements. 

The amount of data stored in the GPU memory in the second stage is 8N
3
: u(r,

 
t) 

and w(r,
 
t) for the three time steps (six 32-bit words), the gradient values Φ'c and Φ'а 

(one word), which are updated, and the read-only coefficients c(r), a(r) (one word). 

Since the gradient value is small compared to the coefficients c(r), a(r), the short 

data type is sufficient for its representation. The use of a 16-bit integer type reduces 

memory usage and computation time, while providing an acceptable level of precision 

to accumulate the integrals (4). A scaling factor of 24000/max|Φ'| is applied to the 

gradient Φ' in order to limit the possible increase of the gradient at the next iteration 

and to prevent the coefficients from exceeding the physically realistic range. 

4.3 The Finite Difference Method 

The finite difference method has been proven to be efficient for numerical simulations 

of physical processes. The problem under consideration is no exception. Solving 

problems (1)–(2) and (5)–(6) requires numerical simulation of the wave field with 

given parameters. An explicit FDTD scheme is a naturally data-parallel algorithm 

because the values at all the grid points are computed in the same way and do not 

depend on each other. Such algorithms fit well in SIMD/SPMD-architectures. 

To compute the 3D wave fields at each time step, the volume V is divided into 

blocks that are processed by each thread block of the GPU. The blocks that are far 

from the ultrasound source, where u(r,
 
t)

 
=

 
0 for the current simulation time t, are ex-

cluded. The "Z-marching" method is used inside each block because the optimal 

number of parallel threads in a typical GPU is several hundreds per multiprocessor 

(MP), and the dimension of the problem is approximately 400
3
. The typical number of 

3D blocks to be processed is approximately 10000. The thread blocks are two-

dimensional (x,
 
y), and each thread computes the data sequentially along the Z-axis. 

The discrete Laplacian (8) can be reduced to scalar products of three-component 

vectors by collecting the terms, because only four of the bijl coefficients have non-

repeating values: 

 Δu(i, j, z0)=b0·u(z0) + b1·(u(z0-1) + u(z0+1)), 

 b0={b000, b100, b110}, b1={b100, b110, b111}, 

 u(z)={uij,   ui j+1+ui+1 j +ui j-1+ui-1 j,   ui+1 j+1+ui+1 j-1+ui-1 j+1+ui-1 j-1}. 

To compute Δu sequentially along the Z-axis, we need to keep three vectors per 

thread in the registers: u(z0), u(z0-1), and u(z0+1). At each step of the Z-marching 

method, u(z0+1) becomes u(z0), the new u(z0+1) is computed, and the results for the 

z
 
=

 
z0 plane are saved in the global memory. Small amount of data per thread and 

mostly sequential memory access pattern allow for an efficient GPU implementation. 
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4.4 Profiling the Algorithm  

For profiling, a test run of 6 iterations of the gradient method is carried out for a 

320×320×320 problem using the NVidia GeForce GTX Titan graphics card. The 

OpenCL interface was used for GPU programming. Program profiling statistics are 

shown in Table 1. The computational kernels that require less than 0.01% of the GPU 

time were left out. The start and end times of each kernel run were obtained using 

OpenCL profiling events, then the execution times and overlap times were computed. 

The total time of all GPU operations corresponds to 100%. 

The test shows that, as expected, almost all the time is spent on the calculation of 

3D problems (1)–(2) and (5)–(6) (“ForwardWave” and “BackwardWave” functions). 

The boundary conditions require approximately 6% of the time because the memory 

access pattern is mostly random. The performance impact decreases as the problem 

size N increases, because the boundary contains ~N
2 

elements, while the volume con-

tains ~N
3 
elements. 

Table 1. Execution time for computational kernels and data transfers. 

Runs 
avg, 

μs 

min, 

μs 

max,  

μs 

Over-

lap, s 

Total time 

s 

% 

GPU 
Function 

293216 

306172 

1375 

306172 

306172 

293216 

12331 

293216 

14671 

8512 

271 

11184 

911 

1215 

11645 

14292 

11076 

28 

2017 

1100 

252 

112 

385 

1139 

275 

712 

38 

23 

1247 

1063 

499 

15842 

3049 

2041 

16146 

17981 

16143 

251 

3615 

1245 

0 

3423.1 

0 

0 

0 

0 

0 

0 

0 

0 

79.47 

3424.39 

1.25 

372.11 

3565.55 

4190.81 

136.59 

8.37 

29.60 

9.37 

0.94 

0.02 

0.01 

4.41 

42.21 

49.62 

1.62 

0.10 

0.35 

0.11 

LoadBound 

SaveBound 

Initialize 

FwdBoundCond 

ForwardWave 

BackwardWave 

SaveExData 

LoadExData 

DisplayGL 

ScalarMax 

DATA TRANSFERS              

306172 

293216 

293216 

39767 

251 

32 

33 

76520 

26 

26 

32 

0 

1506 

51 

65 

47662 

76.19 

0 

0 

0 

77.08 

9.51 

9.91 

30.43 

0.01 

0.11 

0.12 

0.36 

_LoadFromGPU 

_SaveToGPU 

_SaveExData 

_BufferOp 

 

The data transfers between the GPU and the system memory require less than 1% 

of the time. Some data transfers are performed in parallel with the calculations. The 

total program execution time exceeded the total GPU time by 7.5%. This value shows 

the overhead costs that are not parallel with the GPU computations, like summation 

and data distribution via the MPI interface. 

Further optimization of the algorithm includes choosing the size of the thread 

blocks, which determines the optimal use of the GPU register files and memory ac-

cess circuits. Fig. 5a shows the execution time for different block sizes on a GTX 

Titan device. The optimal block size choice can provide up to 15% performance 

boost, and the size of 32×4 was found to be optimal for this problem on all of the 

tested devices. 
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The algorithm was tested using a number of GPU devices: NVidia Tesla K40s on 

the “Lomonosov-2” supercomputer, NVidia Tesla X2070 on the “Lomonosov” super-

computer of the Moscow State University Supercomputer Center [13], NVidia Ge-

Force GTX Titan and GTX 660 on personal computers. 

 
      a)              b) 

Fig. 5. Execution time: direct problem (bottom), “conjugate” problem (middle), other (top):  

a) for various block sizes, GTX Titan;  b) for various devices, 32×4 block size. 

Fig. 5b shows the execution time for various devices. On the supercomputers, the 

test run comprised executing 8 tasks in parallel on 8 devices and collecting the data 

using the MPI interface, as shown on Fig. 3; on PCs, a single task was executed and 

the data were saved to a disk. The MPI_Allreduce operation required less than 1% 

of the total time (280 ms for 8 parallel tasks, 340 ms for 48 parallel tasks on the “Lo-

monosov” supercomputer equipped with a 40 Gbit/s QDR Infiniband network). 

The tests demonstrated a direct relationship between the performance and the 

memory bandwidth of the device. The more expensive Tesla devices showed lower 

performance, which means that the specific Tesla features are not relevant to this 

particular problem. The parameters of the algorithm, such as caching in local memory 

vs. automatic caching, were tuned for best performance on each device. 

5 The Architecture of the Computing System for Solving 

Inverse Problems of 3D Ultrasonic Tomography  

The main problem in 3D wave tomography imaging is that in a typical problem of 

size 400
3
,
 
the number of unknowns reaches 10

8
. The number of ultrasound sources 

required to collect enough data is approximately 20–40, and the total number of com-

puted data points reaches 10
12

. These computations have to be performed within a 

reasonable time. 

The FDTD method is a data-intensive task, for which the memory performance is 

of prime importance. Therefore, graphics processors are a natural choice. GPU com-

puting performance remains high as long as the data fits into the on-board memory of 

the device. 

Let us formulate the requirements for a computer system that can be used in a 

tomographic complex. To determine these requirements, we ran a series of tests. Ta-
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ble 2 shows the execution times and memory requirements for different problem siz-

es. These tests were performed on an NVidia GeForce GTX Titan device. 

The performance is a primary limiting factor here because the execution time is 

proportional to N
4
, whereas the amount of memory is proportional to N

3
. This means 

that there is an optimal amount of on-board GPU memory. Thus, using expensive 

devices with large amounts of memory is impractical because of the greatly increased 

time needed to process such amount of data. 

Table 2. Memory requirements and execution times for various problem sizes. 

3D problem size (N) 256 288 320 384  416 448 512 

GPU memory used, GB 0.8 1.2 1.5 2.2 2.8 3.5 5.0 

System RAM used, GB 1.5 2 3 5 6 8 12 

Time per one iteration, s 11 16 23 48 63 92 160 

 

Let us assume that a practically acceptable computation time is 1 hour for 100 gra-

dient method iterations (36 s per iteration). Then, we can use one device with 3 GB of 

on-board memory for each ultrasound source when the problem size is limited to 

360
3
. To tackle problems of sizes up to 400

3
, we can use two such devices per source, 

or a single higher-end device. This setup requires 6 GB of system RAM and 3.5 GB 

of GPU memory for each source. For example, the NVidia GeForce GTX 690 

graphics card, which contains two 2-GB GPU devices on a single board, can be used 

to this end. The proposed algorithm theoretically allows splitting the processed vol-

ume between two GPUs across the Z-axis. To balance the load, the partitions should 

include the same number of blocks, which is known a priori. This is a standard ap-

proach to parallelizing 3D FDTD schemes. 

Recently announced devices with High Bandwidth Memory architecture (HBM) 

have approximately 3 times the performance compared to devices with GDDR5 

memory. Using one such device per source, the problem size can be increased to 480
3
. 

In this setup, the device should have 6 GB of on-board memory, and 10 GB of system 

RAM per source is required. A problem size of 480
3
 is close to the practical require-

ments for ultrasonic mammography applications. This grid size provides a resolution 

of 0.4 mm over a 20 cm range. 

Let us formulate the essential characteristics of the specialized GPU computer.  

Graphics processors and RAM storage. Each computing node must contain at least 

a sufficient number of GPU devices to compute the residual functional gradient for a 

single source in a reasonable time. For problem sizes up to 360
3
 — one GPU device 

(~250 GB/s memory bandwidth, 3 GB of on-board memory) and 4 GB of RAM stor-

age for each ultrasound source. For larger problems — two consumer-class GPU de-

vices (4–6 GB of total GPU memory), or one higher-end or HBM-class device, and 

10–12 GB of RAM storage per source. The total number of ultrasound sources is 20–

30. The number of GPU devices per node should be maximized in order to reduce the 

total number of hardware components. Currently available mainboards can support up 

to 4 devices. 

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

404



Central processors. The CPUs distribute data to the GPUs and between computing 

nodes. The CPUs must meet the minimal requirements. 

Communication network. The network is used to combine the data from all the 

nodes to compute the gradient and to distribute the next iterative approximation to all 

the nodes (Fig. 3). These actions are carried out only once per iteration. Because only 

the all-reduce and broadcast operations are needed, the optimal network topology is a 

star or a tree topology. The minimal required bandwidth is ~200 MB/s. 

Disk storage. The disk storage must meet the minimal requirements. The amount 

of data to be stored is under 50 GB for one experiment. 

These requirements can be met using common solutions that fit in a single rack and 

have a power consumption of 10–20 kW. Modern graphics cards require 150–300 W 

per unit, and this value steadily decreases as the technology improves. A mainboard 

with CPU and RAM requires no more than 250 W; thus, a node containing a main-

board and four GPU devices requires at most 1.5 kW. 

Using widely available hardware components, we can build computing systems 

that provide the medical image reconstruction using the 3D wave tomography tech-

nology. The performance gain relative to a single-CPU personal computer is on the 

order of 1000 times. This estimation is based on a typical 30-fold difference between 

CPU and GPU implementations of 3D FDTD methods [14], multiplied by an estimat-

ed number of devices in the cluster of 32. 

Graphics cards and GPU supercomputers continue to improve. There is no doubt 

that in a few years, the performance of graphics processors will increase by several 

times, while the energy footprint will decrease. All this speaks in favour of using 

GPU clusters as specialized supercomputers for the new ultrasonic tomographic sys-

tems currently being developed. 

6 Conclusions and Discussion 

The requirements for a GPU cluster that provides an efficient implementation of 

the iterative gradient methods of the reconstruction of tomographic images are formu-

lated. The specialized GPU cluster can achieve a 1000-fold performance increase 

compared to that of a single-CPU personal computer. The characteristics, such as the 

size, power consumption, and cost, of a GPU cluster allow it to be used as a compu-

ting system in the new medical ultrasonic tomographic complexes being developed. 

There are other high-performance solutions that can be used for solving the inverse 

problems of ultrasound imaging. Modern multicore systems, such as the Intel Xeon 

Phi, have performances comparable to that of a GPU, but these systems are much 

more expensive because they are much more complex devices designed for a wide 

range of applications. CPU-based systems require a large number of memory access 

channels and a large cache to be efficient for 3D imaging. According to the authors, 

GPU clusters have the most promising architecture for high-performance 3D image 

reconstruction. 
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