
Supercomputer modelling of electromagnetic
wave scattering with boundary integral equation

method

Andrey Aparinov1, Alexey Setukha2, and Stanislav Stavtsev3

1 Central Aerohydrodynamic Institute, Zhukovsky, Moscow Region, Zhukovsky
Str. 1, 140180 , Russia

andrey.aparinov@gmail.com
2 Lomonosov Moscow State University, Moscow, Leninskie Gory, GSP-1, 119991,

Russia
setuhaav@rambler.ru

3 Institute of Numerical Mathematics Russian Academy of Sciences, Moscow,
Gubkin str. 8, 119333, Russia

sstass2000@mail.ru

Abstract. Authors consider the approaches to increase efficiency of cal-
culations in the problem of numerical modelling of electromagnetic wave
scattering. To solve such kind of problems authors develop innovative
variation of boundary integral equations method based on utilisation of
integral equation with hyper singular integrals which can be solved with
methods of piece-wise approximations and collocations. From numeri-
cal point of view the problem reduces to the solution of the system of
linear equations which coefficients present the influence of cells of mesh
on collocation points. The specialities of parallel algorithms for diffrac-
tion problems are described as for the straight solutions of the appearing
linear systems so as for the approach utilising mosaic-skeleton approxi-
mation method which allows to solve linear equation system calculating
only small part of matrix elements.
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1 Introduction

Mathematical modelling of electromagnetic wave scattering by surfaces with
complex shapes is actual problem for which solution there are various approaches.
If wave length is much less than typical sizes of reflecting objects methods of
physical optics and asymptotic methods work well. But in case of wave length
comparable to objects sizes it is critical to formulate and numerically solve exte-
rior boundary value problem for electromagnetic field in space outside the bodies.
Modern grid and finite-element methods based on discretization of electromag-
netic field in space allow to consider complex, including non-homogeneous, struc-
ture of the environment and different physical effects [1]. However, the significant
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problem here is that to fulfil boundary conditions on infinity one have to use
calculating domain many times exceeding size of bodies. This leads to the great
calculating difficulty of such methods. Herewith the requirement of smallness of
space discretization step in comparison to wave length puts the limitation on
utilisation of non-uniform meshes.

In case of modelling monochromatic wave processes in homogeneous environ-
ment the approach based on the method of boundary integral equations is very
efficient [2], [3]. Here the solution of boundary problem is found from the inte-
gral representation with the integrals written for the boundary of the problem
solution domain (body surfaces). The whole problem reduces to integral equa-
tions written on this boundary. With this the boundary conditions on infinity
are fulfilled automatically and obtained solutions exactly satisfy the equations
in the problem solution domain. For the numerical solution the grid is needed
only on body surfaces. The problem of calculation efficiency remains actual here
and raises from the necessity to model diffraction on bodies with complex shapes
and the requirements to wide the diapason of investigated wave lengths.

Specific of methods of boundary integral equations is that in their discretiza-
tion appear systems of linear equations with filled matrices which rank is de-
fined by the number of cells in mesh. Here both problems of computation time
reduction and element storage in operating memory are of great importance and
practice shows that in many cases the memory problem is leading.

In this article two approaches to the solution of high complexity problems
are described. First is the application of mosaic-skeleton approximations which
allows to approximately solve the linear system calculating only comparably
small number of its matrix elements [4]. This leads both to significant gain
in computation time and in memory utilisation. Second is parallel computing.
The implemented algorithms are based on a variation of numerical method for
boundary integral equations developed in [5]-[6]. This approach utilize integral
equations with strongly singular integrals which can be solved by methods of
piece-wise constant approximations and collocations. Authors describe the spe-
cial aspects of parallel algorithms as for the straight solution of linear equation
system so for approximate solution with mosaic-skeleton approximations.

2 Reduction of problem to integral equation

Authors consider a 3D problem of scattering of a monochromatic electromagnetic
field by a body or a system of bodies. Each body can be either a solid object
bounded by a closed surface or a thin surface (a screen). The surfaces of the
bodies are assumed to be ideally conducting, and the ambient medium is assumed
to be homogeneous. The described below problem statement is classical [2], [7].

Let Σ — total surface of bodies and screens which can be closed (surface
of ideally conducting body), opened (ideally conducting screen) or consists of
several components of such kind. Let us call Ω — space domain outside consid-
ered bodies. The problem is to find the electric and magnetic field intensities,
which will be sought in the form Efull(x)e−iωt, Hfull(x)e−iωt, x ∈ Ω, where ω
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— circular frequency of electromagnetic field, t — time, x = (x1, x2, x3) ⊂ R3

— points in space. It is assumed than full electromagnetic field is inducted by
primary electromagnetic emission where electric and magnetic field intensities
can be represented as Eent(x)e−iωt and Hent(x)e−iωt, respectively. With this
full electric and magnetic field intensities we will find in form

Efull(x) = Eent(x) + E(x),Hfull(x) = Hent(x) + H(x), (1)

E ,H — unknown intensities of electric and magnetic fields which have to satisfy
Maxwell equations ([2], p.109):

rotE = iωµH, rotH = −iωεE. (2)

Here ε and µ — dielectric and magnetic conductivity of environment. Either
must be fulfilled Sommerfeld radiation conditions at infinity ([2], p.69,116):{

∂E

∂τ
+ ikE = o

(
|x|−1

)
,
∂H

∂τ
+ ikH = o

(
|x|−1

)
|x| → ∞, (3)

where ∂/∂τ — derivative in the direction of vector τ = x/ |x|, and the condition
|∇E| ⊂ Lloc2 , |∇H| ⊂ Lloc2 ([7], subsection 22).

On the surfaces of irradiated objects Σ the condition of equality to zero of
tangential component of full electric field must be fulfilled and it may be written
in form

n×E = f , (4)

where f = −n×Eent, where n — unit normal vector to the surface.

From now on we consider that on closed components of surface Σ vector n
has the direction outside the body, on each opened component it has violent
direction but to one side on all surface.

Unknown tension of secondary electric field we’ll find using known integral
representation ([2], p.110):

E(x) =

∫
Σ

e(j(y), x, y)dσy, x ∈ Σ, (5)

where j = j(x), x ∈ Σ — unknown tangential vector field on surface Σ (surface
currents),

e(j, x, y) = {gradxdivx[jΦ(x− y)] + k2jΦ(x− y)} where j ∈ C3, x, y ∈ Σ, x 6= y,
(6)

k2 = ω2εµ,

Φ(x) =
eikr

4πr
, r = |x| .

Herewith Maxwell equations (2) and conditions on infinity (3) are fulfilled au-
tomatically.
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As it shown in [5], for predefined surface field j = j(x), x ∈ Σ, when special
smoothness requirements of this field are completed, vector field E, defined by
(5), has boundary values on each side of surface on surface Σ and

n×E+ = n×E− = n×E,

where E — straight value, got from the expression (5) when placing in it point
x ∈ Σ. Herewith under integral expression, defined by formula (6) has singularity

of orderO
(
|x− y|−3

)
and the integral should be understood as hyper singular in

the sense of the Hadamard finite value. Placing unknown field E(x) in boundary
value (4), we get boundary integral equation with hyper singular integral:

n(x)×
∫
Σ

{gradxdivx[j(y)Φ(x− y)] + k2j(y)Φ(x− y)}dσy = f(x), x ∈ Σ. (7)

3 Numerical scheme

For the numerical solution of integral equation (7) authors use the collocation
method with utilisation of rectangle type quadratures basing on values of un-
known function in nodes coinciding with collocation points, developed in [5].
Total surface Σ is approximated by set of cells σi, i = 1, ..., n. Authors use sur-
face mesh which is constructed by following method. Surface Σ is divided into
modules, each of which is approximated by spline surface and comes a mapping
of a plane rectangle to 3D space. Then this rectangle is divided to rectangular
cells and this partition arises on module of surface Σ some set of surface cells,
where each has 4 vertices (surface may have poles near which cells have triangle
form but considered as quadrangles with 2 coincided vertices).

In work [5] was developed the numerical method for approximation of inte-
gral equation (7), which uses only information about cell vertices and doesn’t
need any other information about surface parametrization. On each cell the col-
location point is chosen xi as the weight center of cell vertices (in the assumption
that all vertices have equal masses), and normal ort is constructed ni as a vector
orthogonal to the diagonals of the cell. After that on each cell local orthonormal
coordinate system is constructed with vectors ei1 and ei2 = ni × ei1 in plane,
orthogonal to vector ni). Vector directions ei1 can be chosen violent in specified
plane.

Let ji — approximate value of function j(y) in point xi ∈ σi, i = 1, ..., n,

j∗i (y) = (ji × ni)× n(y), (8)

y ∈ σi — tangential vector field in cell σi, approximating on this cell function
j(x). Replacing in equation (7) on each cell σj function j(y) to function j∗j and
writing this equation in nodes xi, we get system of operator equations:∑n

j=1
Aijjj = f(xi), i = 1, ..., n, (9)
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Aijjj = ni ×
∫
σj

e(j∗j (y), x, y)dσy. (10)

Equation system (9) we can rewrite in the form of system of linear algebraic
equations in respect to the vector coordinates ji, i = 1, ..., n, in local bases
constructed in grid cells:

jj = j1j e
1
j + j2j e

2
j . (11)

Placing vector jj in form (11) to equation (9) and multiplying each equation
on vectors eli, l = 1, 2, we get system of linear algebraic equations:∑

j=1,...,n
l=1,2

amlij j
l
j = fmi , i = 1, ..., n,m = 1, 2, (12)

where fmi = (f i, e
m
i ), i = 1, n , m = 1, 2, amlij = (Aije

l
j , e

m
i ),m, l = 1, 2, i, j =

1, ..., n.
While calculating the coefficients of equation system (12) the integrals (10)

are calculated by formulas from work [5] based on extraction of main singularity
in explicit form. Herewith the integrals from dominant terms are calculated ana-
lytically. The remaining weakly singular integrals can be calculated numerically
by method of additional partition of each cell and utilisation of rectangular type
formulas with smoothing of singularity by multiplying on smoothing function.
The details of calculation of weakly singular integrals are described in works [6].

In the examples below problem of plane wave scattering by ideally conducted
bodies is considered. In this case primary field is written as:

Eent(x) = E0e
ikr,Hent(M) =

eikr

ωµ
k×E0, (13)

where k — wave vector (herewith k = |k|), r — radius vector of the point x, E0

— defined vector orthogonal to vector k (vector E0 defines wave polarization).
One of the purposes of solving scattering problem is to find directional pattern

of secondary field. There patterns characterize dependence of radar-cross section
σ (RCS) in the direction of pre-set unit vector τ defined by formula:

σ(τ ) = lim
R→∞

4πR2 |E(Rτ )|2

|Eent|2

from vector direction τ . Directional patterns usually made in form of dependence
of values σ from some angle, which defines this vector.

If the tension of electric field is represented in form (5), then for value σ(τ )
the following formula is true:

σ(τ ) =
4π

|Eent|2
k2

∣∣∣∣∣∣
∫
Σ

i

ωε
e−ik(τ ,y) (jE − τ (j(y), τ )) dσy

∣∣∣∣∣∣
2

.

In numerical solution the last integral is calculated numerically with rectangle
quadrature formula on the base of calculated approximate values ji, i = 1, ..., n
of function j(y) on the cells of surface mesh.
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4 Numerical complexity of the algorithm, parallel
algorithm

Main calculation costs in numerical implementation of the algorithm are re-
lated to the solution of the system of linear equations (12), which consists of 2n
complex equations, where n — number of cells. As it was mentioned above the
number of cells is defined by the requirement of utilising small cells in compar-
ison to body sizes and to wave length. So the calculation difficulty grows with
increase of frequency of falling field.

In practice it is possible to save out following 2 classes of problems. First is
to investigate characteristics of electromagnetic field in space and to construct
directional pattern of secondary field for known primary field. Second class is
to calculate inverse RCS which characterize intensity of secondary field in the
direction back to the direction of falling field of predefined frequency, (with
condition that τ = −k), depending on the direction of vector k. In first case the
system (12) is solved single-fold and afterwards the result processing is done. In
second case the system (12) is solved many times with the same matrix (matrix
depends only on parameter k which is constant if frequency doesn’t change) and
different right-hand sides.

Authors have implemented three different algorithms of linear system so-
lution: with LU decomposition, with GMRES iteration algorithm [8] and with
mosaic-skeleton matrix approximation [4] and GMRES algorithm.

In the first and second variants of algorithms parallel calculation of matrix
elements is done and all elements are stored in RAM memory (own block for each
processor) and afterwards the solution itself for one or several right-hand sides
is done. The solution is implemented using standard Scalapack procedures for
LU factorization or with GMRES iterative method. It is notable that GMRES
does not give any advantages in time or in memory in this case because of very
slow convergence (more than 1000 iterations) and implementations with restart
do not converge at all. Herewith authors didn’t find any preconditioners that are
able to achieve better convergence.

It was pointed out from practical calculations that problems of outstanding
interest usually require meshes with 50000 and more cells. So it becomes clear
that the main deficit resource is RAM and the algorithms of first interest are
those that allow to calculate and store only small part of matrix elements.

The software was tested on supercomputer ”Chebyshev” in Lomonosov Mos-
cow State University supercomputer center and on INM RAS computer cluster.
In first case 150 processors and 225 Gb of RAM were used in second case 16
processors and 180 Gb of RAM were used. In both cases different problems with
grids up to 50 000 cells were successfully calculated. Significant increase of cell
number required the increase in operational memory (as predicted). So success-
ful calculations for the problem with 100000 cells were made on ”Lomonosov”
supercomputer in Lomonosov Moscow State University supercomputer center.
About 400 Gb of RAM was used in calculations.

Further increase of cell number is limited by the lack of RAM memory to
store matrix elements. So authors used mosaic-skeleton method in combination
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with GMRES method to solve the linear system. Mosaic-skeleton method allows
to calculate and store about one percent of matrix elements and to use GMRES
for system solution. In spite of slow convergence of iteration method taking into
account significant memory economy for matrix storage this approach allows to
reduce significantly the required RAM size and to increase the size of initial
problem. Its implementation in described below.

5 Utilisation of mosaic-skeleton approximations to the
solution of diffraction problems

To increase the calculation efficiency of the algorithm for linear system (12) solu-
tion the method of mosaic-skeleton approximations described in [4], [9], [10], [11],
[12] was implemented. The overview of recent methods of matrix compression
can be found in works [13], [14]. The advantage of this method in compari-
son to others is generality and automatic precision control (the iteration nature
of mosaic-skeleton approximations algorithm lead to precision increase on each
step). The lack is implementation difficulty comparing to multipole methods, for
example. Implementing this algorithm authors used great groundwork made in
INM RAS.

Mosaic-skeleton approximation method is based on hierarchical decomposi-
tion of mesh cells into clusters basing on binary tree. Possessing a pair of cluster
trees corresponding to pair of meshes representing our discretization we decom-
pose matrix to a list of blocks of different sizes where each block represents
interaction of a group of points-emitters xj (in our case center of each cell) with
group of collocation points xi. Blocks that representing interaction of geometri-
cally distant clusters can be approximated with low-rank matrix (figure 1). On
figure 1 grey color marks dense blocks, those for which all their elements should
be calculated. Other blocks assumed to be low-rank. Using incomplete crest ap-
proximation algorithm [4] such blocks can be presented in form B = U · V T ,
where for block B of size m × n matrices U and V have sizes m × r and n × r
respectively, r � min(m,n) — rank of block B. In such a way instead of storing
O(mn) block elements it is possible to store only O((m+n)r) complex numbers.

Mosaic-skeleton approximations allow to compress matrix. To solve the sys-
tem authors use GMRES [8] adapted to work with compressed matrices. This
algorithm is based on parallel procedure of matrix-vector multiplication, where
matrix is presented in skeleton format. No other operations are needed to solve
the system.

To use GMRES for linear systems with multiple right-hand sizes authors
made some modifications. Among right-hand sides let’s choose vector with resid-
ual with maximal norm. Let’s solve the system with GMRES method for this
right-hand side and construct bases of subspace where the residual minimizes.
Then we calculate the residual of remaining right-hand sides and again choose
vector with maximal residual and repeat GMRES for this right-hand side with
this widening the set of basic vectors. Using in such manner bases from previous
iterations for new right-hand side we do much less steps for this right-hand side.
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So we solve the system for vectors from right-hand side until on the total base
we got the maximal residual of remaining vectors is not achieved, which gives
us the solution of desired accuracy. Finally the number of sorted out right-hand
sides decreases in times.

The main time-consuming operation in matrix approximation is calculation
of block approximations. The advantage of mosaic-skeleton method in that each
block-approximation is independent from others and so can be paralleled into
multiple processors by distributing blocks on different processors. Each processor
has to calculate, construct and store approximations only for its own blocks.
Processor intercommunication occurs only during the system solution step while
matrix-vector multiplication is done. In iteration algorithm of system solution
each processor multiplies only its blocks on vector and the results from different
processors are summed.

Mosaic-skeleton method requires O((m + n)r) to approximate block m × n
of rank r. If r is known, then block number can be distributed to processors
before the block approximation itself. Calculating experiments made for different
integrands show that value r is equal to O(logγ(m + n)), where γ depends on
integrand. For integral equation used in the described problem the calculation
shows that γ is approximately equal to 3/2. Notable that 3/2 does not depend
on wave number.

Fig. 1. Domain partition on clusters, partition tree and matrix partition on blocks:
a) 1 level; b) 2 levels; c) 3 levels; d) 4 levels.

6 Numerical results and discussion

As an example calculation results and calculation costs are shown for the problem
of plane wave scattering by a circular cylinder of finite length. Calculations
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were made on processors Intel Xeon E5-2670v3 2.30GHz of INM RAS cluster
(http://cluster2.inm.ras.ru/). Intel Fortran Compiler 9.0 for Linux (9.0.033) and
OpenMPI Scalapack 2.0.2-4.3 was used.

Figure 2 shows the cylinder form and an example of grid on its surface.
Calculations were made for frequencies 4 GHz (wave length λ = 7.5cm = H/3.3),
8 GHz (λ = 3.75cm = H/6.6) and 16 GHz ((λ = 1.875cm = H/13.2), where H
— cylinder height.

Fig. 2. Geometry and grid of the object.

Table 1. Required storage for matrix.

n 4GHz 8GHz 16GHz full matrix

21760 1.962Gb (7.0%) 2.340Gb (8.3%) 2.999Gb (11%) 28.223Gb

45784 4.457Gb (3.6%) 5.369Gb (4.3%) 6.927Gb (5.6%) 124.920Gb

273600 — — 48.998Gb (4.39%) 11̇15.456Gb

Table 2. Acceleration of matrix calculations for various number of processors. Number
of cells 273600. Frequency 16 GHz.

np 1 2 4 8 16 32 64 128

1.00 1.91 3.39 6.22 11.07 19.95 30.52 42.10

Table 1 shows required storage for matrix of linear equation system com-
pressed with accuracy 10−3 from the number of cells in mesh and emission
frequency. Last column shows memory required to store full matrices. In brack-
ets there is compression coefficient which is calculated as relation of memory
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Table 3. Acceleration of system solution for various number of processors. Number of
cells 273600. Frequency 16 GHz.

np 1 2 4 8 16 32 64 128

1.00 1.83 3.17 3.40 4.46 6.39 6.81 6.29

Fig. 3. 4GHz a) 13482 cells; b) 21760 cells; c) 45784 cells.

Fig. 4. 8GHz a) 13482 cells; b) 21760 cells; c) 45784 cells.
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Fig. 5. 16GHz a) 13482 cells; b) 21760 cells; c) 45784 cells; d) 273600 cells.
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required to store compressed matrix to memory required to store full matrix.
Easy to mention that compression coefficient decreases with matrix size growth
and increases with frequency growth.

Tables 2,3 show parallel acceleration rate for matrix compress operation and
for linear system solution with GMRES method on multiple processors. Parallel
acceleration rate shows the relation of times required to make the same calcu-
lations on one and np processors. Note that computation time on 64 processors
needed for matrix compression was 5 minutes 55 seconds and for solving system
of linear equations was about 26 hours.

Finally Figures 3-5 show RCS diagrams obtained from calculations. The cor-
respondence of RCS represented in decibels σ̃ = 10 log σ in the direction of vector
τ = −k from angle ϕ defining the direction of vector k – see Figure 2. Herewith
considered vertical polarization of falling wave so vector E0 in the expression
(13) is orthogonal to plane Oxy. Calculation results (gray line) are compared to
experimental data (black line) received from ITAE RAS. It can be seen that for
frequency 4 GHz (λ = 7.5cm) the mesh of 13482 cells (maximal size of cell side
is h = 0.375cm) is enough for good agreement of calculation with experiment. It
was shown that for frequency 8 GHz (λ = 3.75cm) the same mesh is also more
or less enough for calculations. Local runs on graphs with calculation results
disappear on mesh with 45784 cells (h = 0.2cm). For the frequency 16 GHz
(λ = 1.875cm ) good agreement with experiment (without parasite local runs on
the curve) was achieved on the mesh with 273600 cells (h = 0.1cm). Note that all
data were presented for vertical polarization because in horizontal polarization
(vector E0 in the expression (13) lies in plane Oxy) for all frequencies coarser
meshes were enough to achieve good agreement with experiment.

Hence, the calculation difficulty of the scattering problems grows with pri-
mary field frequency increase. This is caused by several reasons: the need to cut
the mesh in correspondence to wave length; wave number k growth leads to in-
crease of compress coefficient of matrix of linear equations system (12). Besides
that iteration method convergence speed falls with growth of wave number k. So
even for bodies with simple geometries parallel technologies are required when
wave length is less than body size by an order or more.
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