
Retrospective Satellite Data in the Cloud:
An Array DBMS Approach

Ramon Antonio Rodriges Zalipynis(�), Anton Bryukhov, and Evgeniy Pozdeev

National Research University Higher School of Economics, Moscow, Russia
rodriges@wikience.org, asbryukhov@gmail.com, jonnypozdeev@gmail.com

Abstract. Earth remote sensing has always been a source of “big” data.
Satellite data have inspired the development of “array” DBMS. An ar-
ray DBMS processes N -dimensional (N -d) arrays utilizing a declarative
query style to simplify raster data management and processing. However,
raster data are traditionally stored in files, not in databases. Respective
command line tools have long been developed to process these files. Most
tools are feature-rich and free but optimized for a single machine. The
approach of partially delegating in situ raster data processing to such
tools has been recently proposed. The approach includes a new formal
N -d array data model to abstract from the files and the tools as well as
new distributed algorithms based on the model. This paper extends the
approach with a new algorithm for the reshaping (tiling) of N -d arrays.
The algorithm physically reorganizes the storage layout of N -d arrays to
obtain an order of magnitude speedup. The extended approach outper-
forms SciDB up to 28× on retrospective Landsat data – one of the most
typical and popular kind of satellite imagery. SciDB is the only freely
available distributed array DBMS to date. Experiments were carried out
on an 8-nodes cluster in Microsoft Azure Cloud.

Keywords: ChronosServer · SciDB · Raster Data · Cloud Computing ·
Remote Sensing · Array DBMS · Command Line Tools · Landsat

1 Introduction

Earth remote sensing is increasingly becoming a data-rich, practically impor-
tant and commercially attractive domain. The most prominent example is the
Landsat Program – the longest continuous space-based record of Earth’s land
in existence. The Program lasts from 1972 onwards and has accumulated over
6.8 × 106 scenes mostly in GeoTIFF files (≈ 6 PB in total) [8]. Landsat data
are so popular that Amazon and Google provide Landsat scenes via commercial
clouds [5]. The number of practical Landsat applications is rapidly growing [7].
A retrospective time series of Landsat scenes for a particular area is of great
importance since it makes it possible to track area changes that were happening
over the past decades.

The file-centric model of raster data storage resulted in a broad set of highly
optimized raster file formats. For example, GeoTIFF represents an effort by over

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

308

160 different companies and organizations to establish interchange format for
georeferenced raster imagery [6]. Decades of development and feedback resulted
in numerous feature-rich, elaborate, free and quality-assured tools for processing
raster files. For example, NCO (NetCDF Operators) are are under development
since about 1995 [10], GDAL (Geospatial Data Abstraction Library) has over
one million lines of code made by hundreds contributors [4].

An array DBMS is one of the tools to streamline raster data processing. The
idea of partially delegating raster data processing to existing command line tools
was first presented and proved to outperform SciDB on NetCDF data 3× to 193×
on a single machine [16] and up to 1000× running both SciDB and ChronosServer
on a computer cluster (Microsoft Azure Cloud) [17]. ChronosServer is the system
into which the delegation ability is being integrated [15].

The formal array model and formal distributed algorithms are given in [17].
The new two-level data model was designed to uniformly represent diverse raster
data types and formats, take into account the distributed context, and be inde-
pendent of the underlying raster file formats at the same time [17].

The main goal of this paper is to advance the proposed delegation approach
and to show its exceptional suitability for satellite data processing. ChronosServer
outperforms SciDB on raw Landsat scenes. To obtain an order of magnitude
speedup, a physical reorganization of the storage layout of 2-d Landsat scenes
is carried out by cutting and joining them into 3-d arrays. This case is gener-
alized and a generic reshaping algorithm is proposed to transform a set of N -d
arrays with arbitrary shapes to a set of M -d arrays with a fixed shape, where
N −M ∈ Z. The new algorithm is useful on a “data cooking” stage to spend
some time to prepare data and make further algorithms to run much faster.

In summary, the major contributions of this paper are (i) the generic N -d
reshaping algorithm and (ii) an experimental evaluation of ChronosServer and
SciDB on retrospective Landsat 8 data in the Cloud.

The rest of the paper is organized as follows. For the sake of completeness,
section 2 describes the array model, dataset model, and ChronosServer archi-
tecture [17]. Section 3 gives generic distributed algorithms for in situ processing
of arbitrary N -d arrays. The algorithms are refined in order to treat NetCDF
and GeoTIFF formats and delegate portions of work to NCO and GDAL tools.
Section 4 presents the N -d reshaping algorithm. Section 5 gives the performance
evaluation. Section 6 reviews the related work. Section 7 concludes the paper.

2 ChronosServer

2.1 ChronosServer Multidimensional Array Model

In this paper, an N -dimensional array (N -d array) is the mapping A : D1×D2×
· · · ×DN 7→ T, where N > 0, Di = [0, li) ⊂ Z, 0 < li is a finite integer, and T is
a numeric type (to be specific about value ranges, size in bytes, precision, etc.,
a C++ type according to ISO/IEC 14882 can be taken). The li is said to be the
size or length of ith dimension (in this paper, i ∈ [1, N] ⊂ Z).

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

309

Let us denote the N -d array by

A〈l1, l2, . . . , lN 〉 : T (1)

By l1× l2×· · ·× lN denote the shape of A, by |A| denote the size of A such that
|A| =

∏
i li. A cell or element value of A with integer indexes (x1, x2, . . . , xN) is

referred to as A[x1, x2, . . . , xN], where xi ∈ Di. Each cell value of A is of type T.
The array may be initialized after its definition by enumerating the values of the
cells. For example, the following defines and initializes a 2-d array of integers:
A〈2, 2〉 : int = {{1, 2}, {3, 4}}. In this example, A[0, 0] = 1, A[1, 0] = 3, |A| = 4,
and the shape of A is 2× 2.

Indexes xi are optionally mapped to specific values of ith dimension by coor-
dinate arrays A.di〈li〉 : Ti, where Ti is a totally ordered set, and di[j] < di[j+ 1]
for all j ∈ Di. In this case, A is defined as

A(d1, d2, . . . , dN) : T (2)

A hyperslab A′ v A is an N -d subarray of A. The hyperslab A′ is defined by
the notation

A[b1 : e1, . . . , bN : eN] = A′(d′1, . . . , d
′
N) (3)

where bi, ei ∈ Z, 0 6 bi 6 ei < li, d
′
i = di[bi : ei], |d′i| = ei − bi + 1, and for all

yi ∈ [0, ei − bi] the following holds

A′[y1, . . . , yN] = A[y1 + b1, . . . , yN + bN] (4a)

d′i[yi] = di[yi + bi] (4b)

Equations (4a) and (4b) state that A and A′ have a common coordinate subspace
over which cell values of A and A′ coincide.

2.2 ChronosServer Datasets

A dataset D = (A,M,P) contains a user - or higher-level array A(d1, . . . , dN) : T
and the set of system- or lower-level arrays P = {(Ak, Bk, Ek,Mk, nodek)},
where Ak v A, k ∈ N, nodek is an identifier of the cluster node storing ar-
ray Ak, Mk is metadata for Ak, B〈N〉 : int = {b1, b2, . . . , bN}, E〈N〉 : int =
{e1, e2, . . . , eN} such that Ak = A[b1 : e1, . . . , bN : eN]. A user-level array is
never materialized and stored explicitly: an operation with A is mapped to a
sequence of operations with respective arrays Ak. Let us call a user-level ar-
ray and a system-level array an array and a subarray respectively for short. A
dataset also contains metadata M = {(key, val)}, where key is a string and
val is a string or a number. Dataset metadata includes two types of informa-
tion: general dataset properties (name, description, contacts, etc.) and meta-
data valid for all p ∈ P (array data type T, storage format, etc.). For example,
M = {(name = “Landsat 8 Band 1”), (type = int16), (format = GeoTIFF)}.
Let us refer to an element in a tuple p = (Ak, Bk, . . .) ∈ P as p.A for Ak, p.B for
Bk, etc. Example of a subarray metadata p.M = {(key, val)} is p.M = {(date =
“2016-Aug-08”, bounding box = “WKT(. . .)”, projection = “EPSG:32637”)}.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

310

2.3 ChronosServer Architecture

ChronosServer runs on a computer cluster of commodity hardware. Files are
distributed among cluster nodes without changing their names and formats. A
file is always stored entirely on a node in contrast to parallel or distributed file
systems. Workers run on each node and are responsible for data processing. One
Gate at a dedicated node receives client queries and coordinates workers. A file
may be replicated on several nodes for fault tolerance and load balancing.

Gate stores metadata for all datasets and subarrays. Consider a dataset D =
(A,M,P). Arrays A.di and elements of ∀p ∈ P except p.A are stored on Gate. In
practice, array axes usually have coordinates such that A.di[j] = start+j×step,
where j ∈ [0, |A.di|) ⊂ N, start, step ∈ R. Only |A.di|, start, and step values
have to be usually stored. ChronosServer array model merit is that it has been
designed to be generic as much as possible but allowing to establish 1:1 mapping
of a p ∈ P to a physical dataset file at the same time.

Upon startup workers connect to Gate and receive a list of all available
datasets and file naming rules. Workers scan their local filesystems to discover
datasets and create p.M , p.B, p.E by parsing file names or reading file metadata.
Workers transmit to Gate the described information.

A user-level array may have a virtual dimension. Values for virtual dimensions
are taken from the subarrays metadata. For example, Landsat files are 2-d arrays
A(lat, lon) without a temporal axis. Virtual axis “time” in A(time, lat, lon) may
contain scenes acquisition dates extracted from the file names. This makes it
possible to treat a set of Landsat scenes as a 3-d array.

3 Array Operations

3.1 Aggregation

The aggregate of an N -d array A(d1, d2, . . . , dN) :T over axis d1 is the (N − 1)-d
array Aaggr(d2, . . . , dN) :T such that Aaggr[x2, . . . , xN] = faggr(cells(A[0 : |d1|−
1, x2, . . . , xN])), where x2, . . . , xN are valid integer indexes, faggr : T 7→ w is an
aggregation function, T is a multiset of values from T, w ∈ T, cells : A′ 7→ T is
the multiset of all cell values of an array A′ v A.

Algorithm 1 performs aggregation of system-level arrays.

Algorithm 1 Distributed in situ array aggregation with delegation to an exter-
nal command line tool (procedure Aggregate is executed on workers).

Input: wid is the identifier of the worker performing final aggregation
1: procedure Aggregate(D, faggr, wid) . D is a dataset, see section 2.2

2: aggregate all p ∈ P residing on this worker into p′ . DELEGATION
3: if the id of this worker equals to wid then
4: accept subarrays from other workers: Paggr

5: aggregate p′ and all p ∈ Paggr into paggr
6: report success to Gate
7: else send p′ to worker with id = wid

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

311

The generic aggregation algorithm 1 is based on the dataset model from
section 2.2 and takes into account that system-level arrays may overlap and
cover the N -d space irregularly (e.g., scenes following a riverbed). Also, Landsat
scenes for the same path and row may be shifted relatively to each other (it is
hard to capture precisely the same area each time).

Algorithm 1 is designed for faggr ∈ {max,min, sum}. The basic idea is that
workers aggregate in parallel all subarrays residing locally into one subarray and
send it to a worker calculating the final result. Calculating mean is reduced to
calculating the sum and dividing the result onto the number of participating
subarrays. The Gate is responsible for calculating this number and sending it to
the worker performing final aggregation (not shown in the algorithm).

In section 5, we always set wid to the largest possible. Array p′ on line 2 may
grow large in volume and require splitting. We leave this case for future work.
Line 2 is highlighted with light gray to accent the work being delegated to an
external tool: gdal calc.py for GeoTIFF format and an NCO tool (ncra, ncwa,
or ncap2 depending on file structure) for NetCDF format.

3.2 Chunking

Chunking is the process of partitioning original array onto a set of smaller sub-
arrays called chunks. Chunks are autonomous, possibly compressed subarrays
(hyperslabs) with contiguous storage layout. Given chunk shape c1×· · ·×cN and
an N -d array A(d1, . . . , dN) : T, the exact chunking operation reorganizes cells in
array A such that all cells of A with coordinates (x1, . . . , xN) and (y1, . . . , yN)
belong to the same chunk if xi div ci = yi div ci for all i. Due to space con-
straints, please, find the illustration and benefits of chunking in [16].

The exact chunking of an array may lead to data movement between files
and cluster nodes. However, in practice the condition ci � |A.di| usually holds.
This translates to ci � |p.A.di| for ∀p ∈ P (in practice, raster data are already
shipped in wisely cut files satisfying this condition). For example, in climate
modeling it is common to split a time series with hourly time step onto files
storing yearly or monthly data.

A good practical approach is to do inexact user-level array chunking and
exact independent chunking of its subarrays. More chunks will smaller shapes
than the given one will appear. However, the fraction of such small chunks will
be negligible and they will not influence significantly the I/O performance. Note
that if |A.di| mod ci 6= 0, then even the exact chunking of a user-level array is
not possible leading to a certain amount of chunks with smaller shapes.

In practice, inexact chunking is even more desirable in many cases: it is
much faster and more consistent than the exact chunking. Recall that files under
ChronosServer control are directly accessible by a user and any other software.
Consider the climate modeling example given above. In this case, it is incon-
sistent to have a perfectly chunked file named “2015.nc” and supposed to store
data for year 2015 but with extra grids from the next and/or previous years.

Chunking is delegated to gdal translate (GDAL) and ncks (NCO) for
GeoTIFF and NetCDF file formats respectively.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

312

4 Generic Reshaping Algorithm

This section presents an algorithm to reshape system-level arrays. The algorithm
is useful on a “data cooking” stage to spend some time to reshape the subarrays
to speedup further raster operations.

It is costly to aggregate and/or hyperslab large number of files. For example,
aggregating a time series of 2-d scenes makes the hidden asymptotic constants
quite noticeable. Changing position of a virtual axis during reshaping requires
complex data moves between files (reshaping operation is defined in [17]). Chunk-
ing along a virtual axis A.vi could be implemented as co-locating p1, p2 ∈ P on
a single machine such that p1.vi[x] and p2.vi[y] are in the same chunk. This
“virtual” chunking will not speedup the I/O as chunking of a single physical file.

The reshaping algorithm overcomes these limitations. For example, initial
shape of raw Landsat files (system-level arrays) is 1×L1×L2 (time× lat× lon),
where L1 ≈ L2 ≈ 8000. Reshaping subarrays, say, to 5 × L1/4 × L2/4 will
accelerate aggregation and hyperslabbing (hyperslabbing is defined in [17]). In
this case, virtual time dimension will become a regular physical dimension and
will explicitly present in dataset files. This will make it possible to delegate
dimension permutation of Landsat 8 scenes (please, refer to [17] for details on
dimension permutation) as well as chunking (section 3.2) to an external tool.

Algorithm 2 takes as input a set of N -d subarrays P with arbitrary shapes
and produces a set of subarrays P ′ such that ∀p′ ∈ P ′ has shape s1×s2×· · ·×sN
(except border cases) and sides of p′ are parallel to the coordinate axes.

Given M 6= N , algorithm 2 reshapes subarrays from N -d to M -d form using
virtual axes supported by ChronosServer data model. A virtual axis can be made
a physical one to get subarrays with greater physical dimensionality M > N
(the case with Landsat scenes described above). An axis can be made virtual
and deleted from the files if the axis has a unit length in all resulting subarrays.
This will produce subarrays with lower physical dimensionality, i.e. M < N .

The basic idea is to cut each p ∈ P onto smaller pieces P ′ = {p′ : p′ v p},
assign each piece a key, and merge all pieces with the same key into a single,
new system-level array. For x ∈ N, lag(x) is defined below.

lag(x) =

{
0, if x = 0

x− 1, if x > 1
(5)

The Reshape function of algorithm 2 implements the idea outlined above.
Each subarray is cut independently by Cut-One procedure, line 3. Set K collects
N -tuples which are N -d keys of cut pieces collected in C. Pieces with the same
key are merged into a single subarray on lines 4–7. Line 6 is highlighted with
light gray since merging of files is possible to delegate to an external tool.

Algorithm 2 is best illustrated on a 2-d case. Consider a 2-d array A(lat, lon),
fig. 1a. Array A has shape 10×15 and consists of 6 subarrays separated by thick
blue lines. The reshaping produces 2-d subarrays with shape 3× 3, s1 = s2 = 3.
Resulting subarrays P ′ are separated with dashed red lines. The hatched area
marks one of the resulting subarrays A[3 :5, 3:5].

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

313

lat

lon

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(a)

A(lat, lon); lon axis has index 2

µ2 s2 η2

lat

lon

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13

(b)

Fig. 1. Reshaping system-level arrays.

Algorithm 2 Generic Reshaping.

Input: D = (A,M,P) . Dataset, section 2.2
S = (s1, s2, . . . , sN) . Target shape for arrays from P is s1 × s2 × · · · × sN
µ = (µ1, µ2, . . . , µN) . Shift, fig. 1b

Output: D′ = (A,M,P ′) . A is the same, ∀p′ ∈ P ′ shape is s1 × s2 × · · · × sN
. (except border cases)

Require: si ∈ [1, Θaxis] ⊂ N, . Resulting pieces are not too large∏N
i=1 si 6 Θshape, µi ∈ [0, si − 1] ⊂ N

1: function Reshape(D, S, µ)
2: C← {} and K← {} . C: line 22, K: line 23 of procedure Cut-One
3: for each p ∈ P do Cut-One(C,K, p, S, µ)

4: for each key ∈ K do
5: C ← {a ∈ C : a.key = key}
6: pnew ← merge all a ∈ C given a.Bnew and a.Enew . DELEGATION
7: P ′ ← P ′ ∪ {pnew}
8: return D′ = (A,M,P ′)

1: procedure Cut-One(C,K, p, S, µ)
2: if bi > µi then . bi = p.B[i], ei = p.E[i]
3: ηi ← si − ((bi − µi) mod si)
4: else
5: ηi ← µi − bi
6: if ηi = 0 then ηi ← si

7: if ηi > ei − bi then
8: xi ← 1
9: else

10: xi ← (ei − bi + 1− ηi) div si + sgn((ei − bi + 1− ηi) mod si) + 1

11: for each yi ∈ [0, xi − 1] ⊂ N do
12: b′i ← si × lag(yi) + ηi × sgn(yi) . 0 6 b′i 6 e′i < |p.di|
13: e′i ← min(si × yi + ηi − 1, ei − bi) . b′i, e

′
i are local indexes within p

14: p′ ← p[b′1 : e′1, b
′
2 : e′2, . . . , b

′
N : e′N] . DELEGATION

15: if b′i + bi > µi then
16: ki ← (b′i + bi − µi) div si + sgn(µi)
17: else
18: ki ← 0 . ki > 0

19: key ← (k1, k2, . . . , kN) . key ⊂ ZN
>0

20: Bnew〈N〉 : int = {b1 + b′1, b2 + b′2, . . . , bN + b′N} . global indexes for p′

21: Enew〈N〉 : int = {e1 + e′1, e2 + e′2, . . . , eN + e′N} . within A.di
22: C← C ∪ {(p′, key,Bnew, Enew)} . C is the set of cuts from all p ∈ P
23: K← K ∪ {key} . K is the set of all generated merge keys

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

314

Subarray A[5 :9, 5:9] will be cut on 9 pieces separated by the red lines: A[5, 5],
A[5, 6 : 8], A[5, 9] and so on. Each of them will be assigned a 2-d key. Resulting
subarray A[3 : 5, 3 : 5] will be assembled from 4 pieces cut from A[5 : 9, 0 : 4],
A[5 : 9, 5 : 9], A[0 : 4, 0 : 4], and A[0 : 4, 5 : 9]. These 4 pieces are A[5, 5], A[5, 3 : 4],
A[3 :4, 3:4], and A[3 :4, 5]. All 4 pieces will have key (1, 1).

Algorithm 2 accepts a shift µi for the ith axis in order to start cutting with
an “indent”, fig. 1b. Resulting subarrays containing a cell with a zero coordinate
will have shape s′1 × s′2 × · · · × s′N , where s′i = µi if µi 6= 0; s′i = si otherwise.

Lines 2–6 of the Cut-One procedure calculate ηi which is a “local indent”
within the current subarray p along the ith axis: ηi cells from p along the ith
axis must go to the resulting subarray contained in p and other source subarrays
bordering with p. Then, xi is found which is the number of pieces to be cut along
the ith axis. Thus,

∏
i xi is the total number of pieces to be cut from p. Loop on

lines 11–23 cuts one piece at a time. Lines 12–13 find indexes within p to cut a
piece on line 14 by the delegation to an external tool. The piece is assigned the
key which is an N -d 0-based index of the resulting subarray to which the piece
belongs. The ith tuple element of an N -d key is the index along the ith axis.

5 Performance Evaluation

Microsoft Azure Cloud was taken for the experiments. Azure cluster creation,
scaling up and down with given network parameters, number of virtual ma-
chines, etc. was fully automated using Java Azure SDK [17]. The latest version
of Ubuntu Linux on which SciDB 16.9 runs is 14.04 LTS. We rented standard
D2 v2 machines with 2 CPU cores (Intel Xeon E5-2673 v3 (Haswell) 2.4 GHz),
7 GB RAM, 100 GB local SSD drive (4 virtual data disks), max 4× 500 IOPS.
Although Azure states the disk to be SSD, after the creation of such a disk Azure
displays the disk to be a standard HDD disk backed by a magnetic drive.

We selected band 1 from nine Landsat 8 scenes for path 190 and row 31
(≈585 MB in total) such that the cloud cover percent for the majority of scenes is
less than 20%. We evaluated the latest SciDB version 16.9 released in November,
2016. We have written a Java program that converts GeoTIFF files to CSV files
to feed the latter to SciDB. To date, this is the only way to import an external
file into SciDB 16.9. We aligned all scenes in UTM coordinates since they are
slightly shifted relatively to each other and imported the scenes into a SciDB
array with shape 9× 7971× 7941. We filled the cells with NULL values for areas
in some scenes that appeared in the result of extension of that scenes during
their alignment. Import time of one Landsat 8 scene into SciDB takes about
40 minutes on a cloud node, not local machine. Therefore, we imported all 9
scenes on a local computer, exported the resulting SciDB array into a file of
proprietary SciDB binary format, and copied that file in the Cloud when needed
(SciDB imports data from its proprietary format much faster).

cluster in order to deploy it on a cluster. SciDB is mostly written in C++, pa-
rameters used: 0 redundancy, 2 instances per machine, 5 execution and prefetch
threads, 1 prefetch queue size, 1 operator threads, 1024 MB array cache, etc.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

315

ChronosServer has 100% Java code, ran one worker per node, OracleJDK 1.8.0 -
111 64 bit, max heap size 978 MB (-Xmx). We used NCO and GDAL tools
available from the standard Ubuntu 14.04 repository. NCO v4.4.2, last modified
2014/02/17. GDAL v1.10.1, released 2013/08/26.

We have evaluated cold query runs (a query is executed for the first time).
Every runtime reported is the average of 3 runtimes of the same query. Respective
OS commands were issued to free pagecache, dentries and inodes each time
before executing a cold query to prevent data caching at various OS levels.
ChronosServer benefits from native OS caching and is much faster during hot
runs when the same query is executed for the second time on the same data.
There is no significant runtime difference between cold and hot SciDB runs.

To increase the data volume and to avoid waiting for loading more scenes, we
attached SciDB array to itself to get the time dimension of size 18. We could not
attach the resulting array to itself again. We tried in many ways including array
import with different chunk shapes but SciDB had been always failing with not

enough memory error. As of 29-May-2017, we did not receive any feedback from
SciDB developers on this issue [11]. The same errors prevented us to measure
SciDB chunking performance (section 3.2). Chunking is one of the slowest SciDB
queries even on small arrays [16]. We replicated 9 scenes to get 18 scenes and
placed them by 2-3 on each node for ChronosServer.

Table 1 summarizes ChronosServer performance on raw and preprocessed
Landsat scenes as well as SciDB performance with automatically chosen chunk
shape for the SciDB array. Given array A(time, lat, lon), “cut m × n” means
extracting a hyperslab A[0 : |time|−1, x1 : x1 +m,x2 : x2 +m], where x1, x2 are
random indexes for array A. Line “Time series” reports hyperslabbing a time
series for a single point A[0 : |time| − 1, x1, x2]. Hyperslabbing is an extraction
of a hyperslab from an array. “Chunk” lines report chunking of A (for raw data,
time is a virtual axis and its chunk size equals to 1).

Table 1. Performance for 18 scenes, 8 cluster nodes

Operation
Time, sec. Ratio,

SciDB/
Chronos

ChronosServer
(raw data)

ChronosServer
(“cooked” data)

SciDB

Average 38.36 8.12 230.74 6.02 28.42

Maximum 38.83 4.56 127.71 3.29 28.00

Minimum 38.98 4.63 125.70 3.22 27.15

Cut 512× 512 1.79 1.01 1.98 1.11 1.96

Cut 1024× 1024 3.34 2.14 3.41 1.02 1.59

Time series 0.53 0.31 0.84 1.58 2.71

Chunk 1× 64× 64 22.37 — — —

Chunk 1× 128× 128 22.49 — — —

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

316

Table 2 shows the time for “cooking” Landsat 8 scenes for further speedup
of the queries. Algorithm from section 4 is implemented in a serial mode: all 18
scenes were processed on a single node. Future work includes assigning a set of
keys to a node which will merge all cut subarrays having the given keys.

Table 2. Preprocessing Landsat data (section 4): 18 scenes, 1 cluster node

Target Shape Time, sec. Target Shape Time, sec.

4× 512× 512 410.25 9×1024×1024 216.62

9× 512× 512 376.32 4×4096×4096 56.87

4×1024×1024 187.41 9×4096×4096 55.45

6 Related Work

Numerous techniques exist for remote sensing data processing. This work is novel
because it is in the context of array DBMS research field. Four modern raster
data management trends are relevant to this paper: industrial raster data models,
formal array models and algebras, in situ data processing algorithms, and raster
(array) DBMS. Good survey of the algorithms is in [3]. A recent survey of array
DBMS and similar systems is in [16]. It is worth mentioning SciDB [18], Oracle
Spatial [12], ArcGIS IS [1], RasDaMan [14], Intel TileDB [19], and PostGIS [13].

A recent survey on the array models and algebras as well as industry standard
data models is in [17]. Work [17] outlines the peculiar features and merits of
ChronosServer data model. It is shown that the most popular array models and
algebras can be mapped to Array Algebra [2]. Industry data models are also
mappable to each other [9]. SciDB does not have a formal description of its data
model. SciDB neither allows array dimensions to be of temporal or spatial types
making it difficult or sometimes impossible to process many real-world datasets.

7 Conclusions

ChronosServer delegates portions of raster data processing to feature-rich and
highly optimized command line tools. This makes ChronosServer to run much
faster than SciDB. ChronosServer is up to 6× faster on raw Landsat 8 scenes
than SciDB on its native storage (the same Landsat 8 scenes imported into
SciDB). ChronosServer is up to 28× faster than SciDB after preprocessing the
scenes which takes 105× to 780× less time than SciDB import.

Future work includes designing a distributed version of the reshaping algo-
rithm proposed in this paper. It could be also beneficial to incorporate fault-
tolerance during the reshaping once it will be parallelized.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

317

Acknowledgments. This work was partially supported by Russian Foundation
for Basic Research (grant �16-37-00416). We also thank anonymous reviewers
for their helpful and inspiring comments.

Contributions. Rodriges: all text, figures, algorithms, ChronosServer, its
data model, Azure management code, SciDB import code, experimental setup.
Pozdeev: SciDB cluster deployment. Bryukhov: partial implementation of the
reshaping algorithm for one machine, adapted SciDB import code to Landsat
data. All authors: experiments.

References

1. ArcGIS for server — Image Extension. http://www.esri.com/software/arcgis/
arcgisserver/extensions/image-extension

2. Baumann, P., Holsten, S.: A comparative analysis of array models for databases.
Int. J. Database Theory Appl. 5(1), 89–120 (2012)

3. Blanas, S., Wu, K., Byna, S., Dong, B., Shoshani, A.: Parallel data analysis directly
on scientific file formats. In: ACM SIGMOD 2014. pp. 385–396

4. Coverity scan: GDAL. https://scan.coverity.com/projects/gdal
5. Earth on AWS. https://aws.amazon.com/earth/
6. GeoTIFF. http://trac.osgeo.org/geotiff/
7. Landsat apps. https://aws.amazon.com/blogs/aws/start-using-landsat-on-aws/
8. Landsat project statistics. https://landsat.usgs.gov/landsat-project-statistics
9. Nativi, S., Caron, J., Domenico, B., Bigagli, L.: Unidata’s common data model

mapping to the ISO 19123 data model. Earth Sci. Inform. 1, 59–78 (2008)
10. NCO homepage. http://nco.sourceforge.net/
11. Not enough memory error – SciDB forum. http://forum.paradigm4.com/t/

problem-with-memory-while-stacking-array/1838
12. Oracle spatial and graph. http://www.oracle.com/technetwork/database/options/

spatialandgraph/overview/index.html
13. PostGIS raster data management. http://postgis.net/docs/manual-2.2/using

raster dataman.html
14. RasDaMan homepage. http://rasdaman.org/
15. Rodriges Zalipynis, R.A.: Chronosserver: real-time access to “native” multi-

terabyte retrospective data warehouse by thousands of concurrent clients. Inform.,
Cybern. Comput. Eng. 14(188), 151–161 (2011)

16. Rodriges Zalipynis, R.A.: ChronosServer: Fast in situ processing of large multidi-
mensional arrays with command line tools. In: Voevodin, V., Sobolev, S. (eds.) Su-
percomputing: Second Russian Supercomputing Days, RuSCDays 2016, Moscow,
Russia, September 26–27, 2016, Revised Selected Papers. Communications in Com-
puter and Information Science, vol. 687, pp. 27–40. Springer International Publish-
ing, Cham (2016), http://dx.doi.org/10.1007/978-3-319-55669-7 3

17. Rodriges Zalipynis, R.A.: Distributed in situ processing of big raster data in the
cloud. In: Perspectives of System Informatics – 11th International Andrei Ershov
Informatics Conference, PSI 2017, Moscow, Russia, June 27–29, 2017, Revised
Selected Papers. Lecture Notes in Computer Science, Springer (2017), in press

18. SciDB homepage. http://www.paradigm4.com/
19. TileDB. http://istc-bigdata.org/tiledb/index.html

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

318

http://www.esri.com/software/arcgis/arcgisserver/extensions/image-extension
http://www.esri.com/software/arcgis/arcgisserver/extensions/image-extension
https://scan.coverity.com/projects/gdal
https://aws.amazon.com/earth/
http://trac.osgeo.org/geotiff/
https://aws.amazon.com/blogs/aws/start-using-landsat-on-aws/
https://landsat.usgs.gov/landsat-project-statistics
http://nco.sourceforge.net/
http://forum.paradigm4.com/t/problem-with-memory-while-stacking-array/1838
http://forum.paradigm4.com/t/problem-with-memory-while-stacking-array/1838
http://www.oracle.com/technetwork/database/options/spatialandgraph/overview/index.html
http://www.oracle.com/technetwork/database/options/spatialandgraph/overview/index.html
http://postgis.net/docs/manual-2.2/using_raster_dataman.html
http://postgis.net/docs/manual-2.2/using_raster_dataman.html
http://rasdaman.org/
http://dx.doi.org/10.1007/978-3-319-55669-7_3
http://www.paradigm4.com/
http://istc-bigdata.org/tiledb/index.html

