
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Anticipation Scheduling in Grid with Stakeholders

Preferences

Victor Toporkov
1
, Dmitry Yemelyanov

1(

)
, and Anna Toporkova

2

1 National Research University “MPEI”,

Moscow, Russia

{ToporkovVV, YemelyanovDM, PotekhinPA}@mpei.ru
2 National Research University Higher School of Economics,

Moscow, Russia

atoporkova@hse.ru

Abstract. In this work, a job-flow scheduling approach for grid virtual organi-

zations (VOs) is proposed and studied. Users’ and resource providers’ prefer-

ences, VOs internal policies, resources geographical distribution along with lo-

cal private utilization impose specific requirements for efficient scheduling ac-

cording to different, usually contradictive, criteria. With increasing level of re-

sources utilization, the set of available resources and corresponding decision

space are reduced. This further complicates the problem of efficient scheduling.

In order to improve overall scheduling efficiency, we propose an anticipation

scheduling approach based on a cyclic scheduling scheme. It generates a near

optimal but infeasible scheduling solution and includes a special replication

procedure for efficient and feasible resources allocation. Anticipation schedul-

ing is compared with the general cycle scheduling scheme and conservative

backfilling using such criteria as average jobs’ start and finish times as well as

users’ and VO economic criteria: total execution time and cost.

Keywords: Scheduling · Grid · Resources · Utilization · Heuristic · Job batch ·

Virtual organization · Cycle scheduling scheme · Anticipation · Replication

1 Introduction and Related Works

In grids with non-dedicated resources the computational nodes are usually partly uti-

lized by local high-priority jobs coming from resource owners. Thus, the resources

available for use are represented with a set time intervals (slots) during which the

individual computational nodes are capable to execute parts of independent users’

parallel jobs. These slots generally have different start and finish times and a perfor-

mance difference. The presence of a set of slots impedes the problem of resources

allocation necessary to execute the job flow from VOs users. Resource fragmentation

also results in a decrease of the total level of computing environment utilization [1, 2].

Application-level scheduling [3], as a rule, does not imply any global resource

sharing or allocation policy. Applications try to control grid resources independently.

Job flow scheduling in VOs [4, 5] supposes uniform rules of resource sharing and



Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

29

consumption, in particular based on economic models [2, 4-6]. Usually there are three

parties in these models: users, resource owners, and VO administrators. General inter-

action and resources or services provisioning between these parties is performed by

means of a certain currency. VO scheduling policy may offer optimization rules to

satisfy both users’ and VO common preferences (owners’ and administrators’ com-

bined). The VO scheduling problems may be formulated as follows: to optimize us-

ers’ criteria or utility function for selected jobs [6, 7], to keep resource overall load

balance [8, 9], to have job run in strict order or maintain job priorities [10], to opti-

mize overall scheduling performance by some custom criteria [11, 12], etc.

Users’ preferences and VO common preferences may conflict with each other. Us-

ers are likely to be interested in the fastest possible running time for their jobs with

least possible costs whereas VO preferences are usually directed to balancing of

available resources load or node owners’ profit boosting. In fact, an economical mod-

el of resource distribution per se reduces tendencies to cooperate [13]. Thus, VO eco-

nomic policies in general should respect all members to function properly and the

most important aspect of rules suggested by VO is their fairness. A number of works

understand fairness as it is defined in the theory of cooperative games [7], such as fair

job flow distribution [9], fair quotas [14,15], fair user jobs prioritization [10], and

non-monetary distribution [16]. In many studies VO stakeholders’ preferences are

usually ensured only partially: either owners are competing for jobs optimizing only

users’ criteria [6, 17], or the main purpose is the efficient resources utilization not

considering users’ preferences [18].

The goal of the current study is to design a general job-flow scheduling approach

which will be able to find a tradeoff between VO stakeholders’ contradictory prefer-

ences based on the cyclic scheduling scheme (CSS). CSS [19, 20] has fair resource

share in a sense that every VO stakeholder has mechanisms to influence scheduling

results providing own preferences. Thus, we elaborate a problem of parallel jobs

scheduling in heterogeneous computing environment with non-dedicated resources

considering users’ individual preferences and goals.

The downside of a majority of centralized metascheduling approaches is that they

lose their efficiency and optimization features in distributed environments with a sig-

nificant workload. In such conditions of a limited resources supply overall job-flow

execution makespan and individual jobs’ finish time minimization become essential

scheduling criteria. For example in [2], a traditional backfilling algorithm provided

better scheduling outcome when compared to different optimization approaches in

resource domain with a minimal performance configuration.

Main contribution of this paper is a CSS-based heuristic anticipation approach

which retains scheduling efficiency and at the same time minimizes job-flow pro-

cessing time. Initially this heuristic generates a near optimal but infeasible (anticipat-

ed) schedule. A special replication procedure is proposed and studied to ensure and

provide a feasible scheduling solution.

The rest of the paper is organized as follows. Section 2 presents a general CSS fair

scheduling concept. The proposed heuristic-based scheduling technique is presented

in Section 3. Section 4 contains experiment setup and results for the proposed sched-

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

30

uling approach and its comparison with backfilling. Finally, Section 5 summarizes the

paper.

2 Cyclic Alternative-Based Scheduling

Scheduling of a job flow using CSS is performed in time cycles known as scheduling

intervals, by job batches [19, 20]. The actual scheduling procedure consists of two

main steps. The first step involves a search for alternative scenarios of each job exe-

cution, or simply alternatives [21]. During the second step the dynamic programming

methods [19, 20] are used to choose an optimal alternatives’ combination. One alter-

native is selected for each job with respect to the given VO and user criteria. An ex-

ample for a user scheduling criterion may be a job runtime, finish time, an overall

running cost, etc. This criterion describes user’s preferences for that specific job exe-

cution and expresses a type of an additional optimization to perform when searching

for alternatives. Alongside with time (𝑇) and cost (𝐶) properties each job execution

alternative has a user utility (𝑈) value: user evaluation against the scheduling criteri-

on. A common VO optimization problem may be stated as either minimization or

maximization of one of the properties, having other fixed or limited, or involve Pare-

to-optimal strategy search involving both kinds of properties [3, 20, 22].

We consider the following relative approach to represent the user utility 𝑈. A job

alternative with the minimum (best) user-defined criterion value Zmin corresponds to

the left interval boundary (𝑈 = 0%) of all possible job scheduling outcomes. An

alternative with the worst possible criterion value 𝑍max corresponds to the right inter-

val boundary (𝑈 = 100%). In the general case, for each alternative with value 𝑍, 𝑈

is set depending on its position in [Zmin; Zmax] interval as follows:

𝑈 =
𝑍−Zmin

𝑍max−𝑍min
∗ 100%. Thus, each alternative gets its utility in relation to the “best”

and the “worst” optimization criterion values user could expect according to the job’s

priority. The more some alternative corresponds to user’s preferences the smaller is

the 𝑈 value.

For a fair scheduling model the second step of the VO optimization problem could

be in form of: 𝐶 → max, lim 𝑈 (maximize total job flow execution cost, while re-

specting user’s preferences to some extent: 𝑈 ≤ 𝑈max); 𝑈 → min, lim 𝑇 (meet user’s

best interests, while ensuring some acceptable job flow execution time: 𝑇 ≤ 𝑇max)

and so on [19].

The launch of any job requires a co-allocation of a specified number of slots, as

well as in the classic backfilling variation. A single slot is a time span that can be

assigned to run a part of a parallel job. The target is to scan a list of available slots and

to select a window of parallel slots with a “length” of the required resource reserva-

tion time. The user job requirements are arranged into a resource request containing a

resource reservation time, characteristics of computational nodes (clock speed, RAM

volume, disk space, operating system etc.), limitation on the selected window maxi-

mum cost.

ALP, AMP and AEP window search algorithms were discussed in [21]. The job

batch scheduling performs consecutive allocation of a multiple nonintersecting in

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

31

terms of slots alternatives for each job. Otherwise irresolvable collisions for resources

may occur if different jobs will share the same time-slots. Sequential alternatives

search and resources reservation procedures help to prevent such scenario. However

in an extreme case when resources are limited or over utilized only at most one alter-

native execution could be reserved for each job. In this case alternatives-based sched-

uling result will be no different from First Fit resources allocation procedure [2]. First

Fit resource selection algorithms [23] assign any job to the first set of slots matching

the resource request conditions without any optimization.

3 Cyclic Anticipation Scheduling

In order to address the scheduling optimization problem the following anticipation

heuristic for job batch scheduling is proposed. It consists of three main steps.

First, a set of all possible execution alternatives is found for each job not consider-

ing time slots intersections and without any resources reservation. The resulting inter-

secting alternatives found for each job reflect a full range of different job execution

possibilities which user may expect on the current scheduling interval.

Second, CSS procedure [19, 20] is performed to select alternatives combination

(one alternative for each job of the batch) optimal according to VO policy. The result-

ing alternatives combination most likely corresponds to an infeasible scheduling solu-

tion as possible time slots intersection will cause collisions on resources allocation

stage. The main idea of this step is that obtained infeasible and anticipated solution

will provide some heuristic insights on how each job should be handled during the

scheduling. For example, if time-biased or cost-biased execution is preferred, how it

should correspond to user criterion and VO administration policy and so on.

Third, a feasible resources allocation is performed. The resulting solution is both

feasible and efficient as it reflects scheduling pattern obtained from a near-optimal

reference solution – a replication step. The base for this replication is an Algorithm

searching for Extreme Performance (AEP) described in details in [21]. AEP helps to

find and reserve feasible execution alternatives most similar to those selected in the

near-optimal infeasible solution.

We used AEP modification to allocate a diverse set of execution alternatives for

each job. Originally AEP scans through a whole list of available time slots and re-

trieves one alternative execution satisfying user resource request and optimal accord-

ing to the user custom criterion. During this scan, we saved all intermediate AEP

search results to a dedicated list of possible alternatives.

For the replication purpose a new Execution Similarity criterion was introduced

which helps AEP to find a window with a minimum distance to a reference alterna-

tive. Generally, we define a distance between two different alternatives (windows) as

a relative difference or error between their significant criteria values. For example if

reference alternative has 𝐶ref total cost, and some candidate alternative cost is 𝐶can,

then the relative cost error 𝐸𝐶 is calculated as 𝐸𝐶 =
|𝐶ref−𝐶can|

𝐶ref
. If one needs to consider

several criteria the distance 𝐷 between two alternatives may be calculated as a linear

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

32

sum of criteria errors: 𝐷𝑙 = 𝐸𝐶 + 𝐸𝑇+. . +𝐸𝑈, or as a geometric distance in a parame-

ters space: 𝐷𝑔 = √𝐸𝐶
2 + 𝐸𝑇

2+. . 𝐸𝑈
2.

AEP modification with the Execution Similarity criterion is represented below.

Input Data:

slotList - a list of available slots ordered non-

decreasingly by their start time;

job - a job for which the search is performed;

refAlternative – reference alternative used to find similar

job execution window.

Result:

closestWindow – execution window similar to refAlternative

begin

minDistance = MAX_VALUE;

for each slot in slotList do

if not(properHardwareAndSoftware(job, slot.node))

continue;

 end if;

 windowSlotList.add(slot);

 windowStartTime = slot.startTime;

 for each wSlot in windowSlotList do

 minLength = wSlot.node.getWorkingTimeEstimate();

 if ((wSlot.endTime - windowStartTime) < minLength)

 windowSlotList.remove(wSlot);

 end if;

 end for;

 if (windowSlotList.size() ≥ job.nodesNeed)

 distance = calculateDistance(windowSlotList, refAlterna-

tive);

 if (distance < minDistance)

 minDistance = distance;

 closestWindow = windowSlotList;

 end if;

 end if;

end for;

end

In this algorithm an expanded window windowSlotList moves through a whole list

of all available slots slotList sorted by their start time in ascending order. At each step

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

33

any combination of job.nodesNeed slots inside windowSlotList can form a window

that meets all the requirements to run the job. The main difference from the original

AEP is that instead of searching for a window with a maximum single criterion value,

we retrieve window with a minimum distance 𝐷𝑔 or 𝐷𝑙 to a reference execution alter-

native. Generally, this distance can reflect job execution preferences in terms of mul-

tiple criteria such as job execution cost, runtime, start time, finish time, etc.

4 Simulation Study

An experiment was prepared as follows using a custom distributed environment simu-

lator [2, 19-21]. For our purpose, it implements a heterogeneous resource domain

model: nodes have different usage costs and performance levels. A space-shared re-

sources allocation policy simulates a local queuing system (like in GridSim or

CloudSim [24]) and, thus, each node can process only one task at any given simula-

tion time. The execution cost of each task depends on its execution time which is

proportional to the dedicated node’s performance level. The execution of a single job

requires parallel execution of all its tasks.

The simulation environment was configured with the following features. The re-

source pool includes 80 heterogeneous computational nodes grouped in a single re-

source domain. A specific cost of a node is an exponential function of its performance

value (base cost) with an added variable margin distributed normally as ±0.6 of a base

cost. The scheduling interval length is 800 time quanta. The initial resource load with

owner jobs is distributed hyper-geometrically resulting in 5% to 10% time quanta

excluded in total.

Jobs number in a batch is 75. Nodes quantity needed for a job is a whole number

distributed evenly on [2; 6]. Node reservation time is a whole number distributed

evenly on [100; 500]. Job budget varies in the way that some of jobs can pay as much

as 160% of base cost whereas some may require a discount. Every request contains a

specification of a custom user criterion which is one of the following: job execution

runtime or overall execution cost.

4.1 Replication Scheduling Accuracy

The first experiment is dedicated to a replication scheduling accuracy study. For this

matter we conducted and collected data from more than 1000 independent job batch

scheduling simulations. First, the general CSS was performed in each experiment for

the following job-flow execution cost maximization problem 𝐶 → max, lim 𝑈𝑎 =
10%. 𝑈𝑎 stands for the average user utility for one job, i.e. lim 𝑈𝑎 = 10% means that

at average resulting deviation from the best possible outcome for each user did not

exceed 10%. Next, linear and geometric replication algorithms were executed to rep-

licate CSS solution using linear 𝐷𝑙 and geometric 𝐷𝑔 distance criteria. In the current

experiment we used job execution cost error and processor time usage error to calcu-

late distances.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

34

Table 1. CSS replication average scheduling results

Job Execution

Characteristic

C -> max,

lim 𝑈𝑎 = 0%

C -> max,

lim 𝑈𝑎 = 10%

Linear

Replication

Geometric

Replication

C -> max,

lim 𝑈𝑎 = 100%

Cost 1283 1349 1353 1353 1475

Processor Time 191.6 191.2 190.6 190.5 202.3

Finish Time 367.1 353.8 356.2 356.4 358.5

Ua, % 0 9.9 17.6 17.8 65

In order to evaluate the resulting difference in scheduling outcomes, we additional-

ly performed CSS algorithm ensuring users’ individual preferences only (lim 𝑈𝑎 =
0%) and ensuring VO preference by maximizing overall cost without taking into

account users’ criteria (lim 𝑈𝑎 = 100%). These additional problems reflect extreme

boundaries for scheduling results, which can be used to evaluate a relative replication

error. Table 1 contains scheduling results for all these three problems and two replica-

tion algorithms.

The results indicate that both linear and geometric replication algorithms provided

average scheduling parameters very close to the reference solution (indicated as bold

in Table 1), and especially close against job execution cost and processor time usage,

i.e. characteristics which were used for a replication distance calculation. For exam-

ple, borderline problems provided average job execution cost (main job-flow optimi-

zation criterion) values 1283 and 1475 correspondingly. Reference intermediate solu-

tion provided 1349. And both replication algorithms ensured average job execution

cost 1353 with only 2% deviation from reference solution against [1283; 1475] inter-

val of possible scheduling outcomes. Although replication algorithms showed their

efficiency with respect to integral job flow processing parameters (such as average

job execution cost, runtime, finish time), individual user’s preferences were consid-

ered to a lesser extent. It can be observed in the Table 1 that both replication algo-

rithms provided average user utility 𝑈𝑎 almost twice as much as the reference prob-

lem.

4.2 Anticipation and Backfilling Scheduling Comparison

The second experiment setup reiterates work [2] and is intended to compare anticipa-

tion scheduling procedure with a traditional backfilling algorithm. Backfilling is able

to minimize the whole job-flow execution makespan as well as to generally follow the

initial jobs relative queue order. These features make backfilling scheduling solution a

good reference target for the anticipation scheduling scheme. The main criteria for

comparison include average jobs’ start and finish times as well as users’ and VO eco-

nomic criteria (such as execution time and cost). We used the following three algo-

rithms for the comparison:

 CSS – the original cycle scheduling scheme;

 ANT – the anticipation scheduling procedure;

 BF – the conservative backfilling algorithm.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

35

In a single experiment CSS and ANT solved 𝐶 → max, lim 𝑈𝑎 = 10% problem.

Execution cost (𝐶 → min) and processor time (𝑇 → min) criteria were uniformly

distributed between 75 user jobs generated in each experiment.

Important addition was introduced for ANT scheduling. In contrast with experi-

ment series in subsection 4.1, job replication geometric distance 𝐷𝑔 was calculated as

𝐷𝑔 = √𝐸𝐶
2 + 𝐸𝑇

2 + 𝐸𝑆
2, where additional element 𝐸𝑠 stands for job start time error. As

a reference start time value for each job we used start time obtained for a particular

job by a prior backfilling scheduling. Thus, when searching for a job execution win-

dow we used infeasible solution for time and cost reference values, and a feasible

backfilling solution as a reference for an attainable start time values complying with a

queue priority.

Fig. 1. Average jobs’ start time in 𝐶 → max, lim 𝑈 problem

To observe the behavior of the main scheduling parameters we conducted experi-

ments with a different number 𝑁 of computing nodes available during the scheduling:

𝑁 ∈ {20,25,30,40}.

Average job’s start and finish times are presented in Figs. 1-2.

As can be seen in Figs. 1-2, backfilling provided better start and finish times for a

job-flow execution compared to CSS and this result is consistent with [2]. In the cur-

rent problem setup backfilling was able to finish the job flow execution almost twice

earlier then CSS. It can be explained by 𝐶 → max, lim 𝑈 scheduling problem which

required CSS to allocate resources for job-flow execution cost maximization consid-

ering contradictory user preferences, not minimizing jobs’ completion times.

At the same time anticipation algorithm during each experiment solved the same 𝐶

→ max, lim 𝑈 problem and provided jobs’ start and finish times only 10% behind the

backfilling scheduling outcome.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

36

Fig. 2. Average jobs’ finish time in 𝐶 → max, lim 𝑈 problem

The details of anticipation scheduling can be examined in Figs. 3-4.

Fig. 3 shows average job execution time provided by backfilling and anticipation

algorithm. Additionally ANT T and ANT C represent average execution times ob-

tained by anticipation scheduling for jobs with time minimization and cost minimiza-

tion criteria correspondingly. As it can be observed, ANT and BF generally provided

comparable execution times, which is not a direct optimization criterion for either of

them. At the same time ANT applied completely different scheduling policies for jobs

with different private scheduling criteria. So that ANT T jobs used 25%-33% less

processor time then ANT C jobs and 15% less compared to BF solution.

Fig. 3. Average jobs’ execution time in 𝐶 → max, lim 𝑈 problem

A similar pattern can be observed in Fig. 4, where average jobs’ execution cost is

presented. ANT and BF provided comparable general job-flow execution cost value.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

37

However ANT was able to consider user preferences and shared resources so that

ANT C jobs execution cost was 10-15% less then ANT T jobs and 6-9% less com-

pared to backfilling.

Fig. 4. Average jobs’ execution cost in 𝐶 → max, lim 𝑈 problem

Summarizing the results, ANT is able to provide a general scheduling outcome

similar to backfilling (with at most 10% error on job’s start and finish times), and at

the same time considers users’ and VO preferences by efficiently solving 𝐶 → max,

lim 𝑈 problem. Thereby the available resources are distributed between user jobs

according to the predefined scheduling requirements (see Fig. 3-4). In our experiment

set they include individual jobs execution preferences (for example, certain job’s

execution cost minimization) and a common job-flow scheduling policy (total job-

flow execution cost maximization in our example).

Speaking of a whole job-flow scheduling policy it is worth noting that despite the

cost maximization performed by ANT, backfilling still provided higher total job-flow

execution cost (Fig. 4). This result may be explained by the need of ANT to addition-

ally consider user preferences (lim 𝑈𝑎 = 10%), including user jobs with a cost mini-

mization criterion. For example, in 𝐶 → max, lim 𝑈𝑎 = 100% problem, which per-

forms cost maximization without taking into account user preferences, ANT provides

1-2% higher job-flow execution cost compared to backfilling, but does not reach orig-

inal CSS by 10%. In this case ANT was limited by a start time reference (obtained

from backfilling solution) and, thus, had fewer opportunities to use available re-

sources for a total cost maximization as opposed to CSS.

5 Conclusions and Future Work

In this paper, we study the problem of fair job batch scheduling with a relatively lim-

ited resources supply. The main problem that arises is a scarce set of job execution

alternatives which eliminates scheduling optimization efficiency.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

38

We propose a heuristic anticipation scheduling which generates a near-optimal but

infeasible reference solution and then replicates it to allocate a feasible accessible

solution. The special replication procedure is proposed which provides 2-5% error

from the reference scheduling solution. The obtained results show that the new heuris-

tic approach provides flexible and efficient solutions for different fair scheduling

scenarios. In case when computing environment with a limited set of resources is

considered the anticipation algorithm is still able to allocate resources according to

VO stakeholders’ preferences, generally complies with queue priorities and provides a

job-flow completion time up to 10% behind backfilling solution.

Future work will be focused on replication algorithm studies and its possible appli-

cation to fulfill complex user preferences expressed in a resource request. Reference

parameters may be obtained from user expectations or transformed from different

scheduling solutions. Different weights may be introduced for errors calculation on

different reference parameters.

Acknowledgments. This work was partially supported by the Council on Grants of

the President of the Russian Federation for State Support of Young Scientists and

Leading Scientific Schools (grants YPhD-2297.2017.9 and SS-6577.2016.9), RFBR

(grants 15-07-02259 and 15-07-03401), and by the Ministry on Education and Sci-

ence of the Russian Federation (project no. 2.9606.2017/8.9).

References

1. Dimitriadou, S.K., Karatza, H.D.: Job Scheduling in a Distributed System Using Backfill-

ing with Inaccurate Runtime Computations. In: Proc. 2010 International Conference on

Complex, Intelligent and Software Intensive Systems, pp. 329-336 (2010)

2. Toporkov, V., Toporkova, A., Tselishchev, A., Yemelyanov, D., Potekhin P.: Heuristic

Strategies for Preference-based Scheduling in Virtual Organizations of Utility Grids. J.

Ambient Intelligence and Humanized Computing, 6(6), 733–740 (2015)

3. Kurowski, K., Nabrzyski, J., Oleksiak, A., Weglarz, J.: Multicriteria Aspects of Grid Re-

source Management. In: J. Nabrzyski, Schopf J.M., and J. Weglarz, editors, Grid resource

management. State of the Art and Future Trends, pp. 271-293. Kluwer Acad. Publ. (2003)

4. Buyya, R., Abramson, D., Giddy, J.: Economic Models for Resource Management and

Scheduling in Grid Computing. J. Concurrency and Computation, 14(5), 1507-1542 (2002)

5. Rodero, I., Villegas, D., Bobroff, N., Liu, Y., Fong, L., Sadjadi, S.M.: Enabling Interoper-

ability among Grid Meta-schedulers. J. Grid Computing, 11(2), 311-336 (2013)

6. Ernemann, C., Hamscher, V., Yahyapour, R.: Economic Scheduling in Grid Computing.

In: D. Feitelson, L. Rudolph, and U. Schwiegelshohn, editors, JSSPP, vol. 18, 128-152.

Springer, Heidelberg (2002)

7. Rzadca, K., Trystram, D., Wierzbicki, A.: Fair Game-theoretic Resource Management in

Dedicated Grids. In: IEEE International Symposium on Cluster Computing and the Grid

(CCGRID 2007), pp. 343-350, Rio De Janeiro, Brazil, IEEE Computer Society (2007)

8. Vasile, M., Pop, F., Tutueanu, R., Cristea, V., Kolodziej, J.: Resource-aware Hybrid

Scheduling Algorithm in Heterogeneous Distributed Computing. J. Future Generation

Computer Systems, vol. 51, 61–71 (2015)

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

39

9. Penmatsa, S., Chronopoulos, A.T.: Cost Minimization in Utility Computing Systems. Con-

currency and Computation: Practice and Experience, Wiley, 16(1), 287-307 (2014)

10. Mutz, A., Wolski, R., Brevik, J.: Eliciting Honest Value Information in a Batch-queue En-

vironment. In: 8th IEEE/ACM International Conference on Grid Computing, pp. 291-297,

New York, USA, (2007)

11. Blanco, H., Guirado, F., Lrida, J.L., Albornoz, V.M.: MIP Model Scheduling for Multi-

clusters. In: Euro-Par 2012, pp. 196-206, Heidelberg, Springer (2012)

12. Takefusa, A., Nakada, H., Kudoh, T., Tanaka, Y.: An Advance Reservation-based Co-

allocation Algorithm for Distributed Computers and Network Bandwidth on QoS-

guaranteed Grids. In: Schwiegelshohn U. Frachtenberg E., editor, JSSPP 2010, vol. 6253,

pp. 16-34, Springer, Heidelberg (2010)

13. Vohs, K., Mead, N., Goode, M.: The Psychological Consequences of Money. Science, vol.

314(5802), 1154-1156 (2006)

14. Carroll, T., Grosu, D.: Divisible Load Scheduling: An Approach Using Coalitional Games.

In: Proceedings of the Sixth International Symposium on Parallel and Distributed Compu-

ting, ISPDC 07, p. 36 (2007)

15. Kim, K., Buyya, R.: Fair Resource Sharing in Hierarchical Virtual Organizations for Glob-

al Grids. In: Proceedings of the 8th IEEE/ACM International Conference on Grid Compu-

ting, pp. 50-57, IEEE Computer Society, Austin, USA (2007)

16. Skowron, P., Rzadca, K.: Non-monetary Fair Scheduling Cooperative Game Theory Ap-

proach. In: Proceeding of SPAA '13 Proceedings of the Twenty-fifth annual ACM Sympo-

sium on Parallelism in Algorithms and Architectures, pp. 288-297, ACM, New York, NY,

USA (2013)

17. Dalheimer, M. Pfreundt, F., Merz, P.: Agent-based Grid Scheduling with Calana. In: Proc.

Parallel Processing and Applied Mathematics, 6th International Conference, pp. 741-750

(2006)

18. Jackson, D., Snell, Q., Clement, M.: Core Algorithms of the Maui Scheduler. In Revised

Papers from the 7th International Workshop on Job Scheduling Strategies for Parallel Pro-

cessing, JSSPP '01, pp. 87-102 (2001)

19. Toporkov, V., Yemelyanov, D., Bobchenkov, A., Tselishchev, A.: Scheduling in Grid

Based on VO Stakeholders Preferences and Criteria. Advances in Intelligent Systems and

Computing, vol. 470, pp. 505–515. Springer International Publishing Switzerland (2016)

20. Toporkov, V., Toporkova, A., Tselishchev, A., Yemelyanov, D., Potekhin, P.: Metasched-

uling and Heuristic Co-allocation Strategies in Distributed Computing. Computing and In-

formatics, vol. 34(1), 45-76 (2015)

21. Toporkov, V., Toporkova, A., Tselishchev, A., Yemelyanov, D.: Slot Selection Algorithms

in Distributed Computing. Journal of Supercomputing, vol. 69(1), pp. 53-60 (2014)

22. Farahabady, M.H., Lee, Y.C., Zomaya, A.Y.: Pareto-optimal Cloud Bursting. In: IEEE

Transactions on Parallel and Distributed Systems, vol. 25, pp. 2670-2682 (2014)

23. Cafaro, M., Mirto, M., Aloisio, G.: Preference-Based Matchmaking of Grid Resources

with CP-Nets. J. Grid Computing 11(2), 211-237 (2013)

24. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya R.: CloudSim: a

Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation

of Resource Provisioning Algorithms. J. Software: Practice and experience, 41(1), 23-50

(2011)

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

40

