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Abstract. In this work, a job-flow scheduling approach for grid virtual organi-

zations (VOs) is proposed and studied. Users’ and resource providers’ prefer-

ences, VOs internal policies, resources geographical distribution along with lo-

cal private utilization impose specific requirements for efficient scheduling ac-

cording to different, usually contradictive, criteria. With increasing level of re-

sources utilization, the set of available resources and corresponding decision 

space are reduced. This further complicates the problem of efficient scheduling. 

In order to improve overall scheduling efficiency, we propose an anticipation 

scheduling approach based on a cyclic scheduling scheme. It generates a near 

optimal but infeasible scheduling solution and includes a special replication 

procedure for efficient and feasible resources allocation. Anticipation schedul-

ing is compared with the general cycle scheduling scheme and conservative 

backfilling using such criteria as average jobs’ start and finish times as well as 

users’ and VO economic criteria: total execution time and cost. 

Keywords: Scheduling · Grid · Resources · Utilization · Heuristic · Job batch · 

Virtual organization · Cycle scheduling scheme · Anticipation · Replication 

1 Introduction and Related Works 

In grids with non-dedicated resources the computational nodes are usually partly uti-

lized by local high-priority jobs coming from resource owners. Thus, the resources 

available for use are represented with a set time intervals (slots) during which the 

individual computational nodes are capable to execute parts of independent users’ 

parallel jobs. These slots generally have different start and finish times and a perfor-

mance difference. The presence of a set of slots impedes the problem of resources 

allocation necessary to execute the job flow from VOs users. Resource fragmentation 

also results in a decrease of the total level of computing environment utilization [1, 2]. 

Application-level scheduling [3], as a rule, does not imply any global resource 

sharing or allocation policy. Applications try to control grid resources independently. 

Job flow scheduling in VOs [4, 5] supposes uniform rules of resource sharing and 

    
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consumption, in particular based on economic models [2, 4-6]. Usually there are three 

parties in these models: users, resource owners, and VO administrators. General inter-

action and resources or services provisioning between these parties is performed by 

means of a certain currency. VO scheduling policy may offer optimization rules to 

satisfy both users’ and VO common preferences (owners’ and administrators’ com-

bined). The VO scheduling problems may be formulated as follows: to optimize us-

ers’ criteria or utility function for selected jobs [6, 7], to keep resource overall load 

balance [8, 9], to have job run in strict order or maintain job priorities [10], to opti-

mize overall scheduling performance by some custom criteria [11, 12], etc. 

Users’ preferences and VO common preferences may conflict with each other. Us-

ers are likely to be interested in the fastest possible running time for their jobs with 

least possible costs whereas VO preferences are usually directed to balancing of 

available resources load or node owners’ profit boosting. In fact, an economical mod-

el of resource distribution per se reduces tendencies to cooperate [13]. Thus, VO eco-

nomic policies in general should respect all members to function properly and the 

most important aspect of rules suggested by VO is their fairness. A number of works 

understand fairness as it is defined in the theory of cooperative games [7], such as fair 

job flow distribution [9], fair quotas [14,15], fair user jobs prioritization [10], and 

non-monetary distribution [16]. In many studies VO stakeholders’ preferences are 

usually ensured only partially: either owners are competing for jobs optimizing only 

users’ criteria [6, 17], or the main purpose is the efficient resources utilization not 

considering users’ preferences [18].  

The goal of the current study is to design a general job-flow scheduling approach 

which will be able to find a tradeoff between VO stakeholders’ contradictory prefer-

ences based on the cyclic scheduling scheme (CSS). CSS [19, 20] has fair resource 

share in a sense that every VO stakeholder has mechanisms to influence scheduling 

results providing own preferences. Thus, we elaborate a problem of parallel jobs 

scheduling in heterogeneous computing environment with non-dedicated resources 

considering users’ individual preferences and goals. 

The downside of a majority of centralized metascheduling approaches is that they 

lose their efficiency and optimization features in distributed environments with a sig-

nificant workload. In such conditions of a limited resources supply overall job-flow 

execution makespan and individual jobs’ finish time minimization become essential 

scheduling criteria. For example in [2], a traditional backfilling algorithm provided 

better scheduling outcome when compared to different optimization approaches in 

resource domain with a minimal performance configuration. 

Main contribution of this paper is a CSS-based heuristic anticipation approach 

which retains scheduling efficiency and at the same time minimizes job-flow pro-

cessing time. Initially this heuristic generates a near optimal but infeasible (anticipat-

ed) schedule. A special replication procedure is proposed and studied to ensure and 

provide a feasible scheduling solution.  

The rest of the paper is organized as follows. Section 2 presents a general CSS fair 

scheduling concept. The proposed heuristic-based scheduling technique is presented 

in Section 3. Section 4 contains experiment setup and results for the proposed sched-
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uling approach and its comparison with backfilling. Finally, Section 5 summarizes the 

paper. 

2 Cyclic Alternative-Based Scheduling 

Scheduling of a job flow using CSS is performed in time cycles known as scheduling 

intervals, by job batches [19, 20]. The actual scheduling procedure consists of two 

main steps. The first step involves a search for alternative scenarios of each job exe-

cution, or simply alternatives [21]. During the second step the dynamic programming 

methods [19, 20] are used to choose an optimal alternatives’ combination. One alter-

native is selected for each job with respect to the given VO and user criteria. An ex-

ample for a user scheduling criterion may be a job runtime, finish time, an overall 

running cost, etc. This criterion describes user’s preferences for that specific job exe-

cution and expresses a type of an additional optimization to perform when searching 

for alternatives. Alongside with time (𝑇) and cost (𝐶) properties each job execution 

alternative has a user utility (𝑈) value: user evaluation against the scheduling criteri-

on. A common VO optimization problem may be stated as either minimization or 

maximization of one of the properties, having other fixed or limited, or involve Pare-

to-optimal strategy search involving both kinds of properties [3, 20, 22].  

We consider the following relative approach to represent the user utility 𝑈. A job 

alternative with the minimum (best) user-defined criterion value Zmin corresponds to 

the left interval boundary (𝑈 =  0%) of all possible job scheduling outcomes. An 

alternative with the worst possible criterion value 𝑍max corresponds to the right inter-

val boundary (𝑈 =  100%). In the general case, for each alternative with value 𝑍, 𝑈 

is set depending on its position in [Zmin;  Zmax] interval as follows:                          

𝑈 =
𝑍−Zmin 

𝑍max−𝑍min
∗ 100%. Thus, each alternative gets its utility in relation to the “best” 

and the “worst” optimization criterion values user could expect according to the job’s 

priority. The more some alternative corresponds to user’s preferences the smaller is 

the 𝑈 value. 

For a fair scheduling model the second step of the VO optimization problem could 

be in form of: 𝐶 → max, lim 𝑈 (maximize total job flow execution cost, while re-

specting user’s preferences to some extent: 𝑈 ≤ 𝑈max); 𝑈 → min, lim 𝑇 (meet user’s 

best interests, while ensuring some acceptable job flow execution time: 𝑇 ≤ 𝑇max) 

and so on [19].  

The launch of any job requires a co-allocation of a specified number of slots, as 

well as in the classic backfilling variation. A single slot is a time span that can be 

assigned to run a part of a parallel job. The target is to scan a list of available slots and 

to select a window of parallel slots with a “length” of the required resource reserva-

tion time. The user job requirements are arranged into a resource request containing a 

resource reservation time, characteristics of computational nodes (clock speed, RAM 

volume, disk space, operating system etc.), limitation on the selected window maxi-

mum cost.  

ALP, AMP and AEP window search algorithms were discussed in [21]. The job 

batch scheduling performs consecutive allocation of a multiple nonintersecting in 
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terms of slots alternatives for each job. Otherwise irresolvable collisions for resources 

may occur if different jobs will share the same time-slots. Sequential alternatives 

search and resources reservation procedures help to prevent such scenario. However 

in an extreme case when resources are limited or over utilized only at most one alter-

native execution could be reserved for each job. In this case alternatives-based sched-

uling result will be no different from First Fit resources allocation procedure [2]. First 

Fit resource selection algorithms [23] assign any job to the first set of slots matching 

the resource request conditions without any optimization.  

3 Cyclic Anticipation Scheduling 

In order to address the scheduling optimization problem the following anticipation 

heuristic for job batch scheduling is proposed. It consists of three main steps.  

First, a set of all possible execution alternatives is found for each job not consider-

ing time slots intersections and without any resources reservation. The resulting inter-

secting alternatives found for each job reflect a full range of different job execution 

possibilities which user may expect on the current scheduling interval.  

Second, CSS procedure [19, 20] is performed to select alternatives combination 

(one alternative for each job of the batch) optimal according to VO policy. The result-

ing alternatives combination most likely corresponds to an infeasible scheduling solu-

tion as possible time slots intersection will cause collisions on resources allocation 

stage. The main idea of this step is that obtained infeasible and anticipated solution 

will provide some heuristic insights on how each job should be handled during the 

scheduling. For example, if time-biased or cost-biased execution is preferred, how it 

should correspond to user criterion and VO administration policy and so on.  

Third, a feasible resources allocation is performed. The resulting solution is both 

feasible and efficient as it reflects scheduling pattern obtained from a near-optimal 

reference solution – a replication step. The base for this replication is an Algorithm 

searching for Extreme Performance (AEP) described in details in [21]. AEP helps to 

find and reserve feasible execution alternatives most similar to those selected in the 

near-optimal infeasible solution.  

We used AEP modification to allocate a diverse set of execution alternatives for 

each job. Originally AEP scans through a whole list of available time slots and re-

trieves one alternative execution satisfying user resource request and optimal accord-

ing to the user custom criterion. During this scan, we saved all intermediate AEP 

search results to a dedicated list of possible alternatives.  

For the replication purpose a new Execution Similarity criterion was introduced 

which helps AEP to find a window with a minimum distance to a reference alterna-

tive. Generally, we define a distance between two different alternatives (windows) as 

a relative difference or error between their significant criteria values. For example if 

reference alternative has 𝐶ref total cost, and some candidate alternative cost is 𝐶can, 

then the relative cost error 𝐸𝐶  is calculated as 𝐸𝐶 =
|𝐶ref−𝐶can|

𝐶ref
. If one needs to consider 

several criteria the distance 𝐷 between two alternatives may be calculated as a linear 
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sum of criteria errors: 𝐷𝑙 = 𝐸𝐶 + 𝐸𝑇+. . +𝐸𝑈, or as a geometric distance in a parame-

ters space: 𝐷𝑔 = √𝐸𝐶
2 + 𝐸𝑇

2+. . 𝐸𝑈
2. 

AEP modification with the Execution Similarity criterion is represented below. 

Input Data:  

slotList - a list of available slots ordered non-

decreasingly by their start time;  

job - a job for which the search is performed;  

refAlternative – reference alternative used to find similar 

job execution window.  

 

Result:  

closestWindow – execution window similar to refAlternative 

 

begin 

minDistance = MAX_VALUE; 

  

for each slot in slotList do 

if not(properHardwareAndSoftware(job, slot.node))  

continue; 

  end if; 

 

  windowSlotList.add(slot); 

  windowStartTime = slot.startTime; 

 

  for each wSlot in windowSlotList do 

  minLength = wSlot.node.getWorkingTimeEstimate(); 

  if ((wSlot.endTime - windowStartTime) < minLength)     

  windowSlotList.remove(wSlot); 

  end if; 

  end for; 

 

  if (windowSlotList.size() ≥ job.nodesNeed) 

  distance = calculateDistance(windowSlotList, refAlterna-

tive); 

  if (distance < minDistance) 

  minDistance = distance; 

    closestWindow = windowSlotList; 

  end if; 

  end if; 

end for; 

end 

In this algorithm an expanded window windowSlotList moves through a whole list 

of all available slots slotList sorted by their start time in ascending order. At each step 
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any combination of job.nodesNeed slots inside windowSlotList can form a window 

that meets all the requirements to run the job. The main difference from the original 

AEP is that instead of searching for a window with a maximum single criterion value, 

we retrieve window with a minimum distance 𝐷𝑔 or 𝐷𝑙  to a reference execution alter-

native. Generally, this distance can reflect job execution preferences in terms of mul-

tiple criteria such as job execution cost, runtime, start time, finish time, etc. 

4 Simulation Study 

An experiment was prepared as follows using a custom distributed environment simu-

lator [2, 19-21]. For our purpose, it implements a heterogeneous resource domain 

model: nodes have different usage costs and performance levels. A space-shared re-

sources allocation policy simulates a local queuing system (like in GridSim or 

CloudSim [24]) and, thus, each node can process only one task at any given simula-

tion time. The execution cost of each task depends on its execution time which is 

proportional to the dedicated node’s performance level. The execution of a single job 

requires parallel execution of all its tasks. 

The simulation environment was configured with the following features. The re-

source pool includes 80 heterogeneous computational nodes grouped in a single re-

source domain. A specific cost of a node is an exponential function of its performance 

value (base cost) with an added variable margin distributed normally as ±0.6 of a base 

cost. The scheduling interval length is 800 time quanta. The initial resource load with 

owner jobs is distributed hyper-geometrically resulting in 5% to 10% time quanta 

excluded in total. 

Jobs number in a batch is 75. Nodes quantity needed for a job is a whole number 

distributed evenly on [2; 6]. Node reservation time is a whole number distributed 

evenly on [100; 500]. Job budget varies in the way that some of jobs can pay as much 

as 160% of base cost whereas some may require a discount. Every request contains a 

specification of a custom user criterion which is one of the following: job execution 

runtime or overall execution cost. 

4.1 Replication Scheduling Accuracy 

The first experiment is dedicated to a replication scheduling accuracy study. For this 

matter we conducted and collected data from more than 1000 independent job batch 

scheduling simulations. First, the general CSS was performed in each experiment for 

the following job-flow execution cost maximization problem 𝐶 → max, lim 𝑈𝑎 =
10%. 𝑈𝑎 stands for the average user utility for one job, i.e. lim 𝑈𝑎 = 10% means that 

at average resulting deviation from the best possible outcome for each user did not 

exceed 10%. Next, linear and geometric replication algorithms were executed to rep-

licate CSS solution using linear 𝐷𝑙  and geometric 𝐷𝑔 distance criteria. In the current 

experiment we used job execution cost error and processor time usage error to calcu-

late distances.  
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Table 1. CSS replication average scheduling results 

Job Execution  

Characteristic 

C -> max, 

lim 𝑈𝑎 = 0% 

C -> max, 

lim 𝑈𝑎 = 10% 

Linear 

Replication 

Geometric 

Replication 

C -> max, 

lim 𝑈𝑎 = 100% 

Cost 1283 1349 1353 1353 1475 

Processor Time 191.6 191.2 190.6 190.5 202.3 

Finish Time 367.1 353.8 356.2 356.4 358.5 

Ua, % 0 9.9 17.6 17.8 65 

 

In order to evaluate the resulting difference in scheduling outcomes, we additional-

ly performed CSS algorithm ensuring users’ individual preferences only (lim 𝑈𝑎 =
0%) and ensuring VO preference by maximizing overall cost without taking into 

account users’ criteria (lim 𝑈𝑎 = 100%). These additional problems reflect extreme 

boundaries for scheduling results, which can be used to evaluate a relative replication 

error. Table 1 contains scheduling results for all these three problems and two replica-

tion algorithms. 

The results indicate that both linear and geometric replication algorithms provided 

average scheduling parameters very close to the reference solution (indicated as bold 

in Table 1), and especially close against job execution cost and processor time usage, 

i.e. characteristics which were used for a replication distance calculation. For exam-

ple, borderline problems  provided average job execution cost (main job-flow optimi-

zation criterion) values 1283 and 1475 correspondingly. Reference intermediate solu-

tion provided 1349. And both replication algorithms ensured average job execution 

cost 1353 with only 2% deviation from reference solution against [1283; 1475] inter-

val of possible scheduling outcomes. Although replication algorithms showed their 

efficiency with respect to integral job flow processing parameters (such as average 

job execution cost, runtime, finish time), individual user’s preferences were consid-

ered to a lesser extent. It can be observed in the Table 1 that both replication algo-

rithms provided average user utility  𝑈𝑎 almost twice as much as the reference prob-

lem.  

4.2 Anticipation and Backfilling Scheduling Comparison 

The second experiment setup reiterates work [2] and is intended to compare anticipa-

tion scheduling procedure with a traditional backfilling algorithm. Backfilling is able 

to minimize the whole job-flow execution makespan as well as to generally follow the 

initial jobs relative queue order. These features make backfilling scheduling solution a 

good reference target for the anticipation scheduling scheme. The main criteria for 

comparison include average jobs’ start and finish times as well as users’ and VO eco-

nomic criteria (such as execution time and cost). We used the following three algo-

rithms for the comparison: 

 CSS – the original cycle scheduling scheme; 

 ANT – the anticipation scheduling procedure; 

 BF – the conservative backfilling algorithm. 
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In a single experiment CSS and ANT solved 𝐶 → max, lim 𝑈𝑎 = 10% problem. 

Execution cost (𝐶 → min) and processor time (𝑇 → min) criteria were uniformly 

distributed between 75 user jobs generated in each experiment.  

Important addition was introduced for ANT scheduling. In contrast with experi-

ment series in subsection 4.1, job replication geometric distance 𝐷𝑔 was calculated as 

𝐷𝑔 = √𝐸𝐶
2 + 𝐸𝑇

2 + 𝐸𝑆
2, where additional element 𝐸𝑠 stands for job start time error. As 

a reference start time value for each job we used start time obtained for a particular 

job by a prior backfilling scheduling. Thus, when searching for a job execution win-

dow we used infeasible solution for time and cost reference values, and a feasible 

backfilling solution as a reference for an attainable start time values complying with a 

queue priority. 

 

 

Fig. 1. Average jobs’ start time in 𝐶 → max, lim 𝑈 problem 

To observe the behavior of the main scheduling parameters we conducted experi-

ments with a different number 𝑁 of computing nodes available during the scheduling: 

𝑁 ∈ {20,25,30,40}. 

Average job’s start and finish times are presented in Figs. 1-2. 

As can be seen in Figs. 1-2, backfilling provided better start and finish times for a 

job-flow execution compared to CSS and this result is consistent with [2]. In the cur-

rent problem setup backfilling was able to finish the job flow execution almost twice 

earlier then CSS. It can be explained by 𝐶 → max, lim 𝑈 scheduling problem which 

required CSS to allocate resources for job-flow execution cost maximization consid-

ering contradictory user preferences, not minimizing jobs’ completion times. 

At the same time anticipation algorithm during each experiment solved the same  𝐶 

→ max, lim 𝑈 problem and provided jobs’ start and finish times only 10% behind the 

backfilling scheduling outcome. 

 

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

36



 

Fig. 2. Average jobs’ finish time in 𝐶 → max, lim 𝑈 problem 

The details of anticipation scheduling can be examined in Figs. 3-4.  

Fig. 3 shows average job execution time provided by backfilling and anticipation 

algorithm. Additionally ANT T and ANT C represent average execution times ob-

tained by anticipation scheduling for jobs with time minimization and cost minimiza-

tion criteria correspondingly. As it can be observed, ANT and BF generally provided 

comparable execution times, which is not a direct optimization criterion for either of 

them. At the same time ANT applied completely different scheduling policies for jobs 

with different private scheduling criteria. So that ANT T jobs used 25%-33% less 

processor time then ANT C jobs and 15% less compared to BF solution. 

 

 

Fig. 3. Average jobs’ execution time in 𝐶 → max, lim 𝑈 problem 

A similar pattern can be observed in Fig. 4, where average jobs’ execution cost is 

presented. ANT and BF provided comparable general job-flow execution cost value. 
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However ANT was able to consider user preferences and shared resources so that 

ANT C jobs execution cost was 10-15% less then ANT T jobs and 6-9% less com-

pared to backfilling.  

 

 

Fig. 4. Average jobs’ execution cost in 𝐶 → max, lim 𝑈 problem 

Summarizing the results, ANT is able to provide a general scheduling outcome 

similar to backfilling (with at most 10% error on job’s start and finish times), and at 

the same time considers users’ and VO preferences by efficiently solving 𝐶 → max, 

lim 𝑈 problem. Thereby the available resources are distributed between user jobs 

according to the predefined scheduling requirements (see Fig. 3-4). In our experiment 

set they include individual jobs execution preferences (for example, certain job’s 

execution cost minimization) and a common job-flow scheduling policy (total job-

flow execution cost maximization in our example). 

Speaking of a whole job-flow scheduling policy it is worth noting that despite the 

cost maximization performed by ANT, backfilling still provided higher total job-flow 

execution cost (Fig. 4). This result may be explained by the need of ANT to addition-

ally consider user preferences (lim 𝑈𝑎 = 10%), including user jobs with a cost mini-

mization criterion. For example, in 𝐶 → max, lim 𝑈𝑎 = 100% problem, which per-

forms cost maximization without taking into account user preferences, ANT provides 

1-2% higher job-flow execution cost compared to backfilling, but does not reach orig-

inal CSS by 10%. In this case ANT was limited by a start time reference (obtained 

from backfilling solution) and, thus, had fewer opportunities to use available re-

sources for a total cost maximization as opposed to CSS. 

5 Conclusions and Future Work 

In this paper, we study the problem of fair job batch scheduling with a relatively lim-

ited resources supply. The main problem that arises is a scarce set of job execution 

alternatives which eliminates scheduling optimization efficiency.  
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We propose a heuristic anticipation scheduling which generates a near-optimal but 

infeasible reference solution and then replicates it to allocate a feasible accessible 

solution. The special replication procedure is proposed which provides 2-5% error 

from the reference scheduling solution. The obtained results show that the new heuris-

tic approach provides flexible and efficient solutions for different fair scheduling 

scenarios. In case when computing environment with a limited set of resources is 

considered the anticipation algorithm is still able to allocate resources according to 

VO stakeholders’ preferences, generally complies with queue priorities and provides a 

job-flow completion time up to 10% behind backfilling solution. 

Future work will be focused on replication algorithm studies and its possible appli-

cation to fulfill complex user preferences expressed in a resource request. Reference 

parameters may be obtained from user expectations or transformed from different 

scheduling solutions. Different weights may be introduced for errors calculation on 

different reference parameters. 
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