
Parallel Heterogeneous Multi-Classifier System for
Decision Making in Algorithmic Trading

Yuri Zelenkov [0000-0002-2248-1023]

National Research University Higher School of Economics, Moscow, Russia
yuri.zelenkov@gmail.com

Abstract. The most important factors of successful trading strategy are the deci-
sions to sell or buy. We propose multi-classifier system for decision making in
algorithmic trading, whose training is carried out in three stages. At the first stage,
features set is calculated based on historical data. These can be oscillators and
moments that used in technical analysis, other characteristics of time series, mar-
ket indexes, etc. At the second stage, base classifiers are trained using genetic
algorithms, and optimal feature set for each of them is selected. At the third stage,
a voting ensemble is designed, weights of base classifiers are selected also using
genetic algorithms. However, the usage of genetic algorithms requires consider-
able time for computing, so the proposed system is implemented in a parallel
environment. Testing on real data confirmed that the proposed approach allows
to build a decision-making system, the results of which significantly exceed the
trading strategies based on indicators of technical analysis and other techniques
of machine learning.

Keywords: Algorithmic trading, Trading strategy; Multi-classifier system; Ge-
netic algorithm.

1 Introduction

Algorithmic Trading (AT) refers to any form of trading using sophisticated algorithms
and programmed systems to automate all or some part of the trade cycle [1, 2]. The
trade cycle and components of AT system are described in [1,2]. The key stages in AT
are the pre-trade analysis, signal generation, trade execution, post-trade analysis, risk
management, and asset allocation.

The key factors of a successful trading strategy are the decisions to "buy" or "sell".
These solutions are based on the alpha model, which is the mathematical model de-
signed to predict the future behavior of the financial instruments that the algorithmic
system is intended to trade [2]. A large number of studies related to the design of alpha
models are known, including using machine learning methods. In this paper, we pro-
pose a method for designing the alpha model, based on multi-classifier system, whose
training is carried out in three stages. At the first stage, features set is calculated based
on historical data. At the second stage, base classifiers are trained using genetic algo-
rithms, and optimal feature set for each of them is selected. At the third stage, a voting

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

260

ensemble is designed, weights of base classifiers are selected also using genetic algo-
rithms.

To build an alpha model based on a multi-classifier system, the following actions
should be performed: obtain and clean data that will drive AT; select base classifiers
that mutually complementary; select architecture of their ensemble. Therefore, an or-
ganization of paper is following: after literature review in the second section, process
of feature engineering is described. In next sections techniques of features wrapping
and classifiers combination in ensemble are discussed. All proposed techniques are il-
lustrated by practical examples. Obtained results are compared with other methods. In
last section, parallel implementation of proposed algorithm is discussed.

2 Related Works

There are two financial instrument prediction methodologies:

• Fundamental Analysis is concerned more with the company and its macro-economic
environment rather than the actual asset. The decisions are made based on the past
performance of the company, the forecast of earning etc.

• Technical Analysis deals with the determination of the asset price based on the past
patterns of the stock using time-series analysis.

When applying Machine Learning to stock data, Technical Analysis is the more ap-
plicable methodology, because it can learn the underlying patterns in the financial time
series. The search of patterns is carried out in two main ways, the first is the identifica-
tion of graphic figures that are formed by price charts, the second is the calculation of
various indicators, the dynamics of which allows predicting asset price behaviour [3,4].
Developers of alpha models based on machine learning usually use technical indicators.
For example, Zhang and Ren [5] presented a trading strategy model that utilizes differ-
ent technical indicators such as Moving Average (MA), Moving Average Convergence
Divergence (MACD), Relative Strength Index (RSI), Slow Stochastic etc.

At the same time, various models of machine learning are used. A major difficulty
in dealing with financial time series representing asset prices is their non-stationary
behavior (or concept drift), i.e. the fact that the underlying data generating mechanism
keeps changing over time. Therefore, in real-time forecasting and trading applications
one is often interested in on-line learning, a situation where the prediction function is
updated following the arrival of each new sample [6]. Various approaches for incre-
mental learning have been proposed in the literature, for both classification [7] and re-
gression problems [6,8].

One of the most popular tools are artificial neural networks (ANNs) [9], which are
often used together with evolutionary techniques, such as genetic algorithms (GA), be-
cause the combination of two or more techniques offers a better result [10,11]. Scabar
and Cloette [12] developed a hybrid prediction model based on an ANN and GA, which
gives evidence that financial time series are not entirely random, and that—contrary to
the predictions of the efficient markets hypothesis—a trading strategy based solely on
historical price data can be used to achieve returns better than those achieved using a

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

261

buy-and-hold strategy. Butler [13] developed an Evolutionary ANN (EANN) that
makes future predictions based on macro-economic data. Tsai & Chiou [14] used tech-
nique that combines ANN with decision trees.

Peters [15,16] proved that time series of stock prices are produced by systems with
memory, he also determined cycles for different industries and stock markets. There-
fore, the predictive tools that can model the memory effect, for example, recurrent neu-
ral networks, are of considerable interest. For example, feedforward networks and re-
current networks (Elman network) that can build “memory” in the evolution of neurons
are reviewed in [17] with application to finance.

As follows from this brief survey, the use of statistical characteristics of time series
and indicators of technical analysis is a widespread practice in AT. Researchers choose
different techniques of machine learning and their combinations. At the same time,
comparatively little attention has been paid to researching the possibilities of combina-
tions of simple classifiers, such as k Nearest Neighbors (kNN), Logistic Regression
(LR), Naive Bayes (NB), Decision Tree (DT), Support Vector Machine (SVM). This
paper intends to fill this gap.

3 Problems of Trading Strategy Design

As it was stated above, we suggest use an ensemble of heterogeneous classifiers. When
creating an effective method for design the AT system, several problems must be
solved.

The first problem concerns the feature engineering and selection. A feature is a piece
of information that might be useful for prediction (wikipedia.org). It can be structured
attribute, combination of attributes and any unstructured information that relevant to
the context. Feature engineering is the process of using domain knowledge to create
features that make model works. Feature selection problem deals with selection of an
optimal and relevant set of features that are necessary for the recognition and prediction
[18,19]. It helps reduce the dimensionality of the measurement space and facilitates the
use of easily computable algorithms for efficient classification.

The second problem concerns hybrid multi classifier system (MCS) design [20]. It
is: system topology (how to interconnect individual classifiers), ensemble design (how
to drive the generation and selection of a pool of valuable classifiers) and fuser design
(how to build a decision combination function).

We use parallel architecture because most MCS’s reported in the literature are struc-
tured in a parallel topology [20,21]. In this architecture, each classifier is feed the same
input data, so that the final decision of the MCS is based on the individual classifiers
outputs obtained independently. We use voting ensemble with majority voting rule. In
that case MCS output is formed as the weighed sum of individual classifiers responses.

The design of hybrid ensemble should support involving of mutually complementary
individual classifiers that provide high diversity and accuracy [21], but it is impossible
to predict what classifiers can be complementary. Therefore, we suggest using the com-
bination of several approaches: random sampling, features selection for each individual

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

262

classifier on base of the GA; determination of each classifier weight in ensemble also
through GA. Thus, the method proposed here includes three stages (Fig. 1). The first
one generates a set of features that can be used for forecasting; on the second one, the
relevant set of features is selected using genetic algorithms for each individual classi-
fier; on the third one, the weights of the voting ensemble are determined also using
genetic algorithms.

Fig. 1. Three stages of MCS training.

4 Features Engineering

4.1 Target Variable

A time series describing the dynamics of a financial instrument (for example, shares of
a company) that can be downloaded from http://finance.yahoo.com includes the
following variables: opening and closing prices, maximum and minimum prices, trad-
ing volume. The service finance.yahoo.com also provides a value of Adjusted Clos-
ing Price (ACP), which is a stock's closing price on any given day of trading that has
been amended to include any distributions and corporate actions that occurred at any
time prior to the next day's open. The ACP is often used when examining historical
returns or performing a detailed analysis on historical returns.

Since we view trading strategy as a classification problem solved with the help of
supervised learning, it is necessary to set the target variable. We define it as follows:

𝑡𝑎𝑟𝑔𝑒𝑡 𝑡 = 1, 𝑝 𝑡 𝑝 𝑡 + 1 < 1
−1, 𝑝 𝑡 𝑝 𝑡 + 1 ≥ 1																																						(1)

where 𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) is target variable (trading signal) in the time 𝑡, 𝑝(𝑡) and 𝑝(𝑡 + 1) are
the ACP’s in current (𝑡) and next (𝑡 + 1) trading intervals respectively.

kNN DT LR NB SVM

1:	Feature	engineering

…

Voting	ensemble

2:	Feature	selection	for	
each	individual	 classifier

3:	Multi-classifier	 system	
design

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

263

This means that if the asset price in the next period increases, our strategy should
generate a buy signal (1). If a financial instrument has already been acquired, it is nec-
essary to retain it. If the price decreases in the next period, then the strategy should give
a sell signal (-1) if the asset is already acquired. If the asset is not bought by this time,
you should refrain from buying. In other words, our system has an ambitious goal - to
predict based on historical data whether the price in the next period will increase or
decrease.

We will assume that the initial capital of the investor is 𝑥(0). If the ‘buy’ signal is
received, he buys the maximum possible number of shares 𝑑 𝑡 = 𝑣 𝑡 𝑝 𝑡 , where
𝑣 𝑡 is the amount of acquired assets, which is restricted by condition 𝑑(𝑡) ≤ 𝑥(𝑡). If
a ‘sell’ signal is received, he sells shares at the current price and his capital becomes
𝑥 𝑡 = 𝑥 𝑡 − 1 + 𝑣 𝑡 𝑝(𝑡). Thus, the goal of the strategy is to maximize the sum
𝑥 𝑡 + 𝑑(𝑡), therefore, its effectiveness can be estimated as 𝑒 = 𝑥 𝑛 + 𝑑 𝑛 /𝑥(0),
where n is the number of trading periods.

Also, we use several assumptions that are typical for research of this kind:

• the volume of sales and purchases is quite small and does not affect the behavior of
the market;

• Transaction costs for operations are zero.

4.2 Features Set

We suggest including in feature set most popular indicators of technical analysis: Mov-
ing Average (MA), Moving Average Convergence Divergence (MACD), Relative
Strength Index (RSI), Stochastic and signals of trading strategies based on these indi-
cators [3,4].

Trading signals based on MA are generated as follows:

𝑆9: 𝑡 = −1, 𝑀𝐴=> 𝑡 − 1 > 𝑀𝐴=@ 𝑡 − 1 	∧ 𝑀𝐴=> 𝑡 < 𝑀𝐴=@ 𝑡
1, 𝑀𝐴=>(𝑡 − 1) < 𝑀𝐴=@ 𝑡 − 1 	∧ 𝑀𝐴=>(𝑡) > 𝑀𝐴=@ 𝑡

,											(2)

where 𝑀𝐴=(𝑡) is mean average in time t, n is widows size. Usually, 𝑛> = 9 and 𝑛@ =
50, these values were determined empirically.

Trading signals based on MA are calculated as follows:

𝑆EFG 𝑡 =
−1, 𝑅𝑆𝐼(𝑡) > 𝑈𝐵
1, 𝑅𝑆𝐼(𝑡) < 𝐿𝐵 ,																																																																																		(3)

where 		𝑅𝑆𝐼 𝑡 = 100[1 − >
>OEF(P)

], 𝑅𝑆 𝑡 = max
=

𝐴𝐺 /min
=
𝐴𝐿, 𝐴𝐺 is average gain,

𝐴𝐿 is average loss, n is number of periods, 𝑈𝐵 and 𝐿𝐵 upper and lower limits respec-
tively. Usually, in technical analysis 𝑛 = 14, 𝑈𝐵 = 70, 𝐿𝐵 = 30.

Trading signals based on MACD are calculated as follows:

𝑆9:Z[𝑡 = −1, 𝐹 𝑡 − 1 > 𝑆 𝑡 − 1 	∧ 𝐹 𝑡 < 𝑆 𝑡 ∧ 𝐹 𝑡 > 0	 ∧ 𝑆 𝑡 > 0

1, 𝐹 𝑡 − 1 < 𝑆 𝑡 − 1 	∧ 𝐹 𝑡 > 𝑆 𝑡 ∧ 𝐹 𝑡 < 0	 ∧ 𝑆 𝑡 < 0,			(4)

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

264

where 𝐹 𝑡 = 𝐸𝑀𝐴=> 𝑡 − 𝐸𝑀𝐴=@(𝑡) is fast MACD line, 𝑆 𝑡 = 𝐸𝑀𝐴=^(𝐹(𝑡)) is
slow MACD line, 𝐸𝑀𝐴= is exponential mean average with window size n. Typically,
𝑛> = 13, 𝑛@ = 26, and 𝑛^ = 9. Useful information also can be extracted from MACD
histogram: 𝐻𝑖𝑠𝑡 𝑡 = 𝑆 𝑡 − 𝐹(𝑡).

Stochastic signals are calculated as follows:

𝑆cPdef 𝑡 =
−1, %𝐾 𝑡 > 𝑈𝐵	 ∧ %𝐷(𝑡) > 𝑈𝐵
1, %𝐾 𝑡 < 𝐿𝐵	 ∧ %𝐷(𝑡) < 𝐿𝐵 ,																																										(5)

where %𝐾 𝑡 = 100[𝑝 𝑡 − min

=>
𝑝(𝑡)]/[max

=>
𝑝 𝑡 − min

=>
𝑝(𝑡)], and %𝐷(𝑡) =

𝑀𝐴=@(%𝐾(𝑡)). Usually, 𝑛> = 14, 𝑛@ = 3, 𝑈𝐵 = 70, 𝐿𝐵 = 30. Sometimes also pa-
rameter ‘slow D’ is used 𝐷(𝑡) = 𝑀𝐴=^ %𝐷 𝑡 with 𝑛^ = 3.

4.3 R/S Analysis

The first algorithm runs, performed on the historical data of Alphabet Inc. (ticker
GOOG), showed that the above indicators are not enough to build an effective trading
strategy. Therefore, to search for relevant characteristics, an R/S analysis of this time
series was conducted using the methodology described by Peters [15,16].

R/S analysis helps to determine the nature of price series by measuring its speed of
diffusion. The speed of diffusion can be characterized by the variance [22]:

𝑧 𝑡 + 𝜏 − 𝑧 𝑡 @ ~𝜏@m,																																																																																						(6)

where 𝑧 𝑡 = log 𝑝 𝑡 is the log prices (ACP) at the time 𝑡, 𝜏 is the arbitrary time lag,
and 〈⋯〉 is average over all 𝜏’s. The ~ means that this relationship turns into equality
with some proportionality constant, 𝐻 is the Hurst exponent. For a price series exhibit-
ing geometric random walk, H=0.5, for a mean reverting series, H<0.5, and for a trend-
ing series H>0.5. In last case, a future data point is likely to be like a data point preced-
ing it, i.e. logarithms log 𝑝(𝑡) 𝑝(𝑡 − 1) and log 𝑝(𝑡 + 1) 𝑝(𝑡) likely will have the
same signs. So, value of Hurst exponent is very valuable domain knowledge that can
help to design effective algorithm.

According to Peters [15,16] Hurst exponent, H, is calculated as asymptotic approxi-
mation of the rescaled range as a function of the time span of a time series as follows

𝐸
𝑅(𝑛)
𝑆(𝑛)

= 𝐶𝑛m	as		𝑛 → ∞,																																																																													(7)

where 𝑅(𝑛) is the rescaled range of first 𝑛 values of 𝑧 𝑡 , 𝑆 𝑛 is their standard devia-
tion, 𝐸[∙] is the expected value, 𝑛 is the number of data points in time series, and 𝐶 is a
constant. Therefore, to find H, it is enough to find a regression
log[R n S n] = log C + H log n.

The results of the Hurst exponent estimation for a series of daily closing prices
(ACP) of Alphabet Inc. for 10 years (2007-2016) are shown in Fig. 2a, the dependence
of its values on period length is shown in the Fig. 2b. As already mentioned, the value

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

265

H = 0.597> 0.5 means that the logarithms of successive price changes are likely to have
the same sign.

(a) (b)

Fig 2. Hurst exponent for the GOOG ACP time series.

Fig. 3a shows the dependence of log 𝑝(𝑡 + 1) 𝑝(𝑡) on log 𝑝(𝑡) 𝑝(𝑡 − 1) , a sig-
nificant part of the points is concentrated in areas II and IV. These values do not change
sign. Fig. 3b shows the probability of changing the sign of the logarithm of the price
increment, depending on the duration of the period:

𝑃 𝜏 = 𝑃 log
𝑝 𝑡 + 𝜏
𝑝 𝑡

log
𝑝 𝑡

𝑝 𝑡 − 1
< 0 																																														(8)

It follows from the Fig. 3b that this probability does not never reach the value 0.5,
corresponding to complete uncertainty. Thus, the investigated price range is not entirely
random. Moreover, for a one day period we have 𝑃(log |(PO>)

|(P)
log |(P)

|(P}>)
< 0) = 0.25,

i.e. the probability that the sign of logarithm of the price ratio in the next day will not
change is 0.75. It is very important domain knowledge, so we must include sign of
log 𝑝(𝑡) 𝑝(𝑡 − 1) in feature set.

Fig 3. Probability of sign of logarithm of price ratio change.

log n

log [R(n)/S(n)]

H=0.597

Length of period n

H
ur

st
 e

xp
on

en
t

log [p(t)/p(t-1)]

lo
g

[p
(t+

1)
/p

(t)
]

I II

III

IV

Pr
ob

ab
ili

ty
 o

f s
ig

n
ch

an
ge

Time lag !

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

266

Other useful information may be extracted form market indices, as well as loga-
rithms of their changes. Therefore, we will also include them in the features set.

As result 41 features where selected for algorithm training including:

• Values of price series (open, close, min and max prices, volume and ACP);
• Technical indicators described in Section 4.2: 𝑀𝐴� 𝑡 , 𝑀𝐴�� 𝑡 , 𝑅𝑆𝐼 𝑡 , 𝐹 𝑡 , 𝑆 𝑡 ,
𝐻𝑖𝑠𝑡 𝑡 , %𝐾 𝑡 , %𝐷 𝑡 , 𝐷(𝑡);

• Trading signals described in Section 4.2: 𝑆9: 𝑡 , 𝑆9:Z[𝑡 , 𝑆EFG 𝑡 , 𝑆cPdef 𝑡 ;
• Sign of log 𝑝(𝑡) 𝑝(𝑡 − 1) ;
• Dow-Jones (ticker ^DJI), NASDAQ (^NDX) and S&P500 (^GSPC) indexes and

signs of logarithms of their ratios.

To train algorithm we used two-year (2015 and 2016) daily prices of Alphabet Inc.
(ticker GOOG). This training set contains 504 samples of 41 features. Test set contains
61 samples of daily data from January to March 2017.

5 Features Selection for Individual Classifiers

We use wrapping method based on genetic algorithm for features selection. The pro-
gram code was developed on the Python language and based on machine learning li-
brary scikit-learn [23]. Therefore, only the classifiers available in this library
were used as basic (kNN, NB, LR, DT and SVM).

Each classifier is coded by an array G with length N, which describes features set
used for its training (N – quantity of features in the researched dataset). Array elements
can take values 0 or 1. If the element is equal to 0, the corresponding feature is excluded
from training set. Value 1 is assigned to all elements of a genotype G of individuals
when initial population is generated. Thereby training of each classifier begins with full
range of features.

The best individual in population is always copied in new population without any
changes (the principle of elitism). Selection of other individuals is rank-based. Mutation
operation is applied with probability 𝑝� to randomly selected G-genotype element of
selected individual, with its value replaced by opposite, i.e. 0 becomes 1, and 1 becomes
0. Crossover operation is applied with probability of 𝑝e, it is implemented as exchange
of randomly selected substring between two individuals.

Fitness is calculated as average classification accuracy value:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
																																											(9)

where TP is true positives, FP is false positives (negatives classified as positives), TN
is true negatives, and FN is false negatives (positives classified as negatives).

On this stage of training the researcher determines a set of classifiers types which
will be used for ensemble design (denote the number of types by M). The classifier of
each type is trained according to the algorithm described above. The set of the trained
classifiers is transferred to the following stage.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

267

Results of individual classifiers training are given in Table 1. For all classifiers, the
following parameters were used: the population size 40, number of generations 20,
𝑝� = 0.5, 𝑝e = 0.5. Accuracy before training is calculated before start of a genetic
algorithm (the features set includes all 41 features). Widely known models kNN, LR,
NB, DT and SVM are used as the basic classifiers with the default parameters of scikit-
learn library. The average accuracy and subsequent confidence interval after training
are given in the column with caption "Accuracy after wrapping". Also, Table 1 lists the
number of selected features and precision / recall values.

Table 1. Results of base classifiers training.

Classifier Accuracy Number of
selected
features

Precision /
recall

Before
wrapping (N=41)

After
wrapping

KNN 0.526 0.558 ± 0.100 21 0.581 / 0.632
LR 0.536 0.585 ± 0.061 14 0.589 / 0.624
NB 0.542 0.577 ± 0.020 16 0.598 / 0.614
DT 0.530 0.530 ± 0.050 17 0.565 / 0.543
SVM 0.552 0.552 ± 0.059 18 0.595 / 0.612

As it follows from Table 1, features wrapping improves performance of classifiers,

but their accuracy remains low, slightly bigger than 0.5.

6 Multi-Classifier System Training

At the third stage ensemble with majority voting rule is designed from the set of the
classifiers trained at the previous stage. The GA is used again. The ensemble is coded
by an array w of M real numbers, 𝑤� ≥ 0. They set value of weight coefficient to cor-
responding classifier. During creation of initial population, the elements 𝑤� are initial-
ized as random numbers with the normality condition 𝑤� = 1.

Selection rules are the same as at the previous stage: elitism and rank selection. Mu-
tation operation is applied to all elements 𝑤𝑖 of the selected individual, their values are
randomly changed by the uniformly distributed number (-0.1; 0.1). If negative wi is
received as the result, it is replaced by 0. At the same time the normality condition isn’t
satisfied. These parameters were determined during experimental launches of the algo-
rithm. Crossover operation is like the crossover at the first stage. Ensemble fitness is
calculated as the accuracy. Object class CE is calculated as the weighed sum of out-
comes 𝑐� of individual classifiers 𝐶� = 𝑤�𝑐��∈9 .

If the sign of 𝐶� matches the object type (𝐶� > 0 means that next price will growth,
𝐶� < 0 means that this price will go down), then an object is considered as recognized
correctly. Absolute value C� corresponds with confidence of classification.

After training, ensemble with accuracy 0.744, precision 0.698, and recall 0.880 was
received. This accuracy value notably outperforms the accuracy of individual classifi-
ers.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

268

7 Trading Strategy Results

The results of back testing of generated strategy on daily prices of Alphabet Inc. shares
(ticker GOOG) in two-year period 2015 – 2016 is presented on Fig. 4a. Proposed algo-
rithm gives the return 𝑒 = 𝑥 𝑛 + 𝑑 𝑛 𝑥(0) = 1.781, this result outperforms mar-
ket growth, which is 1.48. To check real possibility of proposed strategy to generate
profit, another test was conducted on test set (Fig. 4b), return is e = 1.104.

 (a) return on train set (back testing) (b) return on test set

Fig 4. Tests of generated trading strategy.

To check prediction performance of proposed method, few other well-known en-
semble methods were tested on the same training and test set (Table 2). We tested five
Bagging algorithms (on base DT, kNN, NB, LR, and SVC), three Adaptive Boosting
algorithms (on base DT, SVC, and NB) and three other methods (Gradient Boosting,
Random Forest, and ExtraTrees).

Table 2. Comparison of different ensemble techniques.

Method Training set Test set
 accuracy precision recall accuracy precision recall

BAGGING
DT 0.988 0.985 0.992 0.508 0.643 0.474
kNN 0.687 0.676 0.744 0.377 0.500 0.316
NB 0.575 0.585 0.585 0.590 0.651 0.737
LR 0.563 0.565 0.643 0.574 0.667 0.632
SVC 0.575 0.585 0.589 0.492 0.667 0.368
ADABOOST
DT 1.000 1.000 1.000 0.459 0.609 0.368
SVC 0.512 0.512 1.000 0.623 0.623 1.000
NB 0.569 0.575 0.609 0.541 0.625 0.658
OTHER TECHNIQUES
Gradient Boosting 0.978 0.981 0.977 0.459 0.619 0.342
Random Forest 0.980 0.992 0.969 0.492 0.684 0.342
ExtraTrees 1.000 1.000 1.000 0.443 0.577 0.395
Proposed Method 0.744 0.698 0.880 0.590 0.633 0.816

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

269

As follows from Table 2, some techniques outperform proposed method on training
set, but it shows better results on the test set. It means that proposed method more ef-
fectively avoids overfitting. Better results on test set are shown by Bagging on base NB
and Adaboosting on base SVC. Comparison of trading strategies based on these two
techniques and proposed algorithm is presented on Fig.5. Presented data show that pro-
posed algorithm provides better results (return of Bagging + NB is 1.071, return of
AdaBoost + SVC is 1.057, return of proposed method is 1.104).

Fig 5. Comparison of three trading strategies.

To check capability of proposed algorithm to generate profit for assets of different
companies and industries, test on securities of other companies was carried. We used
two-years (2015-2016) daily data of 10 companies from 5 industries for training and
three months’ data (January-March 2017) for testing. Results are presented in Table 3,
including accuracy of ensemble on train and test sets, stock prices changes 𝑝(𝑛)/𝑝(0),
where n is the length of price series, and return e as it define above.

The obtained results confirm that the presented algorithm ensures successful trade
irrespective of the type of industry both in the growing and falling markets. This means
that it can be used as the alpha model in the Portfolio Construction Model [1,2].

8 Parallel Implementation

The proposed algorithm provides good results on daily data, it also can be used on data
of shorter periods. In its essence, the proposed algorithm identifies the trading orders
through reverse engineering of observed quotes. It is so called market microstructure
trading, and many authors suggest that typical holding period for such kind of strategies
should not exceed 10 minutes [24]. Moreover, return of discussed AT strategy can be
improved, first, by including additional basic classifiers (e.g. different models of ANN),

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

270

and second, by increasing the size of the population and the number of generations on
training stages. But time of calculations with presented parameters on 2-core 1.5 GHz
CPU is approximately 20 min, it should be extremely reduced to work on shorter trad-
ing intervals with extra types of base classifiers and larger populations.

Table 3. Performance of proposed method on different assets.

Company Industry
Ensemble
accuracy

Back testing
(train set)

Real testing
(test set)

Test
set

Train
set

Price
change

Return
Price
change

Return

Alphabet ITC 0.744 0.590 1.502 1.781 1.055 1.104
Amgen Pharma 0.785 0.519 0.969 2.491 1.096 1.109
Apple ITC 0.709 0.607 1.133 11.173 1.242 1.246
Exxon Mobile Oil 0.714 0.541 0.932 8.300 0.799 1.168
General Electric Manuf. 0.750 0.507 1.371 2.194 0.948 1.003
Gilead Sciences Pharma 0.881 0.516 0.766 11.436 0.923 1.001
HSBC Finance 0.889 0.508 0.997 7.296 1.024 1.042
JPMorgan Chase Finance 0.775 0.514 1.497 10.453 1.013 1.040
Shell Oil 0.765 0.581 0.981 2.913 0.972 1.013
United Techn. Manuf. 0.877 0.505 1.019 1.970 1.018 1.027

As it was noted above, algorithm was realized on Python programming language,
because there are lot of tools of machine learning around it. It helps to reduce time for
algorithm design and testing, but as Python code does not compiled to native CPU code,
there are possible performance problems.

The most applicable approach without code rewriting is usage of parallel capabilities
of ipython library [25] and multi-core system. Several tests with different number
of CPU cores were executed, to determine if it is possible to reach the required perfor-
mance within the ipython framework. Fig. 6 presents a test environment, which in-
cludes server with eight 3,5GHz CPU cores and client computer, both connected to
trusted network.

On remote multi-core computer, several instances of IPyton engine were started, ac-
cording with number of CPU cores used in test. The IPython engine is a regular Python
interpreter that handles incoming and outgoing Python objects sent over a network con-
nection. All program modules required for computation were located on local disks of
server. IPython controller and client interface were ran on client computer.

As it follows from Fig.1 there are a few opportunities to parallelize program code.
First, it is possible to parallelize individual classifiers training, because they are trained
independently. Second, there is possibility to parallelize genetic algorithms where they
used. Both features were used on base of IPython engine direct interface that provides
the possibility directly manage computation on each engine (without automatic load
balancing), because it required a small correction of the source code.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

271

Results of tests performed on 8-core system are presented on Fig.7, which shows
relative computational time (time of computation on one CPU core is 1). It is evident
that the system with 4 cores provides the performance that satisfies the requirements of
market microstructure trading (computational time is less than 10 minutes [24]).

Fig 6. Test environment to evaluate algorithm performance

Fig 7. Reduction in computation time as a function of the number of CPU cores

However, from Fig. 7 it also follows that further possibilities for increasing perfor-
mance with this approach are exhausted. To compute in shorter time intervals (1 minute
and less), it is necessary to implement the algorithm in the programming language that
allows more efficient use of computer resources.

CPU	core CPU	core CPU	core.	.	.

IPython
engine

IPython
engine

IPython
engine

IPython controller	/	Direct	interface

Client

Multi-core	computer

Client	computer

0,000

0,200

0,400

0,600

0,800

1,000

1,200

1 2 3 4 5 6 7 8

R
el

at
iv

e
ti

m
e

of
 c

om
pu

at
io

n

Number of CPU cores

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

272

9 Conclusion

The presented results show that the proposed algorithm allows to build a trading strat-
egy that stably generates positive return regardless of the behavior of the stock market
(growth or decline). This can be explained by the two reasons. The first is the domain
knowledge, which was used for features engineering. The second is the use of the multi-
classifier system, which combines enough simple classifiers, it helps notable improve
the prediction of price behavior.

Note, that the ways to improve this algorithm are obvious. It is the inclusion of ad-
ditional classifier models in the ensemble, as well as an extension of the search space
when using the genetic algorithm.

Using the parallel capabilities of the ipython allows to reduce the computation time
to 10 minutes or less. However, further performance improvement will require a tran-
sition to another programming language.

References
1. Nuti, G., Mirghaemi, M., Treleaven, P. and Yingsaeree, C.: Algorithmic trading. IEEE Com-

puter 44(11), 61–69 (2011).
2. Treleaven P., Galas M., Lalchand V.: Algorithmic trading review. Communications of the

ACM 56(11), 76-85 (2013).
3. Murphy, J.J.: Technical Analysis of the Future Markets. Prentice Hall, New York (1986).
4. Schwager, J.D.: Technical Analysis. Wiley, New York (1996).
5. Zhang, H., Ren, R.: High frequency foreign exchange trading strategies based on genetic

algorithms. In: Proc. 2nd International Networks Security Wireless Communications and
Trusted Computing (NSWCTC) Conference, vol. 2, pp. 426–429. (2010).

6. Montana G., Parrella F.: Learning to trade with incremental support vector regression ex-
perts. In: Corchado E., Abraham A., Pedrycz W. (eds) Hybrid Artificial Intelligence Sys-
tems. HAIS 2008. LNCS, vol. 5271. Springer, Heidelberg (2008).

7. Laskov, P., Gehl, C., Kruger, S.: Incremental support vector learning: analysis, implemen-
tation and applications. Journal of machine learning research 7, 1909–1936 (2006).

8. Wang, W.: An incremental learning strategy for support vector regression. Neural Pro-
cessing Letters, 21:175–188 (2005).

9. de Oliveira, F. A., Nobre, C. N., Zarate, L. E.: Applying artificial neural networks to predic-
tion of stock price and improvement of the directional prediction index–case study of
PETR4, Petrobras, Brazil. Expert Systems with Applications, 40(18), 7596-7606 (2013).

10. Evans, C., Pappas, K., Xhafa, F.: Utilizing artificial neural networks and genetic algorithms
to build an algo-trading model for intra-day foreign exchange speculation. Mathematical and
Computer Modelling. 58(5), 1249-66 (2013).

11. Yu, L., Wang, S., Lai, K.: A novel nonlinear ensemble forecasting model incorporating
GLAR & ANN for foreign exchange rates. Computers and Operations Research 32, 2523–
2541 (2004).

12. Scabar, A., Cloete, I.: Neural networks, financial trading and the efficient market hypothesis.
In: Oudshoorn, M. (ed.) XXV Australasian Computer Science Conference (ACSC2002),
Melbourne, Australia., vol. 4, (2002).

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

273

13. Butler, M., Daniyal, A.: Multi-objective optimization with an evolutionary artificial neural
network for financial forecasting. In: GECCO '09 Proceedings of the 11th Annual confer-
ence on Genetic and evolutionary computation, Montreal. Canada, pp. 1451-1458 (2009).

14. Tsai, C. F., Chiou, Y. J.: Earnings management prediction: a pilot study of combining neural
networks and decision trees. Expert Systems with Applications, 36(3), 7183-7191 (2009).

15. Peters E.E.: Chaos and order in the capital markets. Wiley, New York (1996).
16. Peters E.E.: Fractal market analysis: applying chaos theory to investments and economics.

Wiley, New York (2003).
17. McNeils, P.D.: Neural networks in finance: gaining predictive edge in the market. Elseiver,

Amsterdam (2005).
18. Han, J., Kamber, M., Pei, J.: Data mining: concepts and techniques. Morgan Kaufmann,

Waltham (2012).
19. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S. C.: A survey of multiobjective evolu-

tionary algorithms for data mining: Part I. IEEE Transaction on Evolutionary Computation,
18(1), 4-19 (2014).

20. Wozniak, M., Grana M., Corchado, E.: A survey of multiple classifier systems as hybrid
systems. Information Fusion, 16(1), 3-17 (2014).

21. Kuncheva, L.: Combining pattern classifiers: methods and algorithms. Wiley, New York
(2004).

22. Chan, E.P.: Algorithmic Trading: Winning Strategies and their Rationale. Wiley, Hoboken
(2013).

23. Pedregosa, F., et al.: Scikit-learn: machine learning in python. Journal of Machine Learning
Researc 12, 2825-2830 (2011).

24. Aldridge, I. High-frequency trading: a practical guide to algorithmic strategies and trading
systems. Wiley, Hoboken (2009).

25. Pérez, F., Granger, B. E.: IPython: a system for interactive scientific computing. Computing
in Science & Engineering, 9(3), (2007).

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

274

