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Abstract. The most important factors of successful trading strategy are the deci-
sions to sell or buy. We propose multi-classifier system for decision making in 
algorithmic trading, whose training is carried out in three stages. At the first stage, 
features set is calculated based on historical data. These can be oscillators and 
moments that used in technical analysis, other characteristics of time series, mar-
ket indexes, etc. At the second stage, base classifiers are trained using genetic 
algorithms, and optimal feature set for each of them is selected. At the third stage, 
a voting ensemble is designed, weights of base classifiers are selected also using 
genetic algorithms. However, the usage of genetic algorithms requires consider-
able time for computing, so the proposed system is implemented in a parallel 
environment. Testing on real data confirmed that the proposed approach allows 
to build a decision-making system, the results of which significantly exceed the 
trading strategies based on indicators of technical analysis and other techniques 
of machine learning. 

Keywords: Algorithmic trading, Trading strategy; Multi-classifier system; Ge-
netic algorithm. 

1 Introduction 

Algorithmic Trading (AT) refers to any form of trading using sophisticated algorithms 
and programmed systems to automate all or some part of the trade cycle [1, 2]. The 
trade cycle and components of AT system are described in [1,2]. The key stages in AT 
are the pre-trade analysis, signal generation, trade execution, post-trade analysis, risk 
management, and asset allocation. 

The key factors of a successful trading strategy are the decisions to "buy" or "sell". 
These solutions are based on the alpha model, which is the mathematical model de-
signed to predict the future behavior of the financial instruments that the algorithmic 
system is intended to trade [2]. A large number of studies related to the design of alpha 
models are known, including using machine learning methods. In this paper, we pro-
pose a method for designing the alpha model, based on multi-classifier system, whose 
training is carried out in three stages. At the first stage, features set is calculated based 
on historical data. At the second stage, base classifiers are trained using genetic algo-
rithms, and optimal feature set for each of them is selected. At the third stage, a voting 
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ensemble is designed, weights of base classifiers are selected also using genetic algo-
rithms. 

To build an alpha model based on a multi-classifier system, the following actions 
should be performed: obtain and clean data that will drive AT; select base classifiers 
that mutually complementary; select architecture of their ensemble. Therefore, an or-
ganization of paper is following: after literature review in the second section, process 
of feature engineering is described. In next sections techniques of features wrapping 
and classifiers combination in ensemble are discussed. All proposed techniques are il-
lustrated by practical examples. Obtained results are compared with other methods. In 
last section, parallel implementation of proposed algorithm is discussed. 

2 Related Works 

There are two financial instrument prediction methodologies:  

• Fundamental Analysis is concerned more with the company and its macro-economic 
environment rather than the actual asset. The decisions are made based on the past 
performance of the company, the forecast of earning etc.  

• Technical Analysis deals with the determination of the asset price based on the past 
patterns of the stock using time-series analysis.  

When applying Machine Learning to stock data, Technical Analysis is the more ap-
plicable methodology, because it can learn the underlying patterns in the financial time 
series. The search of patterns is carried out in two main ways, the first is the identifica-
tion of graphic figures that are formed by price charts, the second is the calculation of 
various indicators, the dynamics of which allows predicting asset price behaviour [3,4]. 
Developers of alpha models based on machine learning usually use technical indicators. 
For example, Zhang and Ren [5] presented a trading strategy model that utilizes differ-
ent technical indicators such as Moving Average (MA), Moving Average Convergence 
Divergence (MACD), Relative Strength Index (RSI), Slow Stochastic etc. 

At the same time, various models of machine learning are used. A major difficulty 
in dealing with financial time series representing asset prices is their non-stationary 
behavior (or concept drift), i.e. the fact that the underlying data generating mechanism 
keeps changing over time. Therefore, in real-time forecasting and trading applications 
one is often interested in on-line learning, a situation where the prediction function is 
updated following the arrival of each new sample [6]. Various approaches for incre-
mental learning have been proposed in the literature, for both classification [7] and re-
gression problems [6,8]. 

One of the most popular tools are artificial neural networks (ANNs) [9], which are 
often used together with evolutionary techniques, such as genetic algorithms (GA), be-
cause the combination of two or more techniques offers a better result [10,11]. Scabar 
and Cloette [12] developed a hybrid prediction model based on an ANN and GA, which 
gives evidence that financial time series are not entirely random, and that—contrary to 
the predictions of the efficient markets hypothesis—a trading strategy based solely on 
historical price data can be used to achieve returns better than those achieved using a 
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buy-and-hold strategy. Butler [13] developed an Evolutionary ANN (EANN) that 
makes future predictions based on macro-economic data. Tsai & Chiou [14] used tech-
nique that combines ANN with decision trees. 

Peters [15,16] proved that time series of stock prices are produced by systems with 
memory, he also determined cycles for different industries and stock markets. There-
fore, the predictive tools that can model the memory effect, for example, recurrent neu-
ral networks, are of considerable interest. For example, feedforward networks and re-
current networks (Elman network) that can build “memory” in the evolution of neurons 
are reviewed in [17] with application to finance. 

As follows from this brief survey, the use of statistical characteristics of time series 
and indicators of technical analysis is a widespread practice in AT. Researchers choose 
different techniques of machine learning and their combinations. At the same time, 
comparatively little attention has been paid to researching the possibilities of combina-
tions of simple classifiers, such as k Nearest Neighbors (kNN), Logistic Regression 
(LR), Naive Bayes (NB), Decision Tree (DT), Support Vector Machine (SVM). This 
paper intends to fill this gap. 
 

3 Problems of Trading Strategy Design 

As it was stated above, we suggest use an ensemble of heterogeneous classifiers. When 
creating an effective method for design the AT system, several problems must be 
solved. 

The first problem concerns the feature engineering and selection. A feature is a piece 
of information that might be useful for prediction (wikipedia.org). It can be structured 
attribute, combination of attributes and any unstructured information that relevant to 
the context.  Feature engineering is the process of using domain knowledge to create 
features that make model works. Feature selection problem deals with selection of an 
optimal and relevant set of features that are necessary for the recognition and prediction 
[18,19]. It helps reduce the dimensionality of the measurement space and facilitates the 
use of easily computable algorithms for efficient classification. 

The second problem concerns hybrid multi classifier system (MCS) design [20]. It 
is: system topology (how to interconnect individual classifiers), ensemble design (how 
to drive the generation and selection of a pool of valuable classifiers) and fuser design 
(how to build a decision combination function). 

We use parallel architecture because most MCS’s reported in the literature are struc-
tured in a parallel topology [20,21]. In this architecture, each classifier is feed the same 
input data, so that the final decision of the MCS is based on the individual classifiers 
outputs obtained independently. We use voting ensemble with majority voting rule. In 
that case MCS output is formed as the weighed sum of individual classifiers responses. 

The design of hybrid ensemble should support involving of mutually complementary 
individual classifiers that provide high diversity and accuracy [21], but it is impossible 
to predict what classifiers can be complementary. Therefore, we suggest using the com-
bination of several approaches: random sampling, features selection for each individual 
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classifier on base of the GA; determination of each classifier weight in ensemble also 
through GA. Thus, the method proposed here includes three stages (Fig. 1). The first 
one generates a set of features that can be used for forecasting; on the second one, the 
relevant set of features is selected using genetic algorithms for each individual classi-
fier; on the third one, the weights of the voting ensemble are determined also using 
genetic algorithms. 

 

 
Fig. 1. Three stages of MCS training. 

4 Features Engineering 

4.1 Target Variable 

A time series describing the dynamics of a financial instrument (for example, shares of 
a company) that can be downloaded from http://finance.yahoo.com includes the 
following variables: opening and closing prices, maximum and minimum prices, trad-
ing volume. The service finance.yahoo.com also provides a value of Adjusted Clos-
ing Price (ACP), which is a stock's closing price on any given day of trading that has 
been amended to include any distributions and corporate actions that occurred at any 
time prior to the next day's open. The ACP is often used when examining historical 
returns or performing a detailed analysis on historical returns. 

Since we view trading strategy as a classification problem solved with the help of 
supervised learning, it is necessary to set the target variable. We define it as follows: 

 

𝑡𝑎𝑟𝑔𝑒𝑡 𝑡 = 1, 𝑝 𝑡 𝑝 𝑡 + 1 < 1
−1, 𝑝 𝑡 𝑝 𝑡 + 1 ≥ 1																																						(1) 

 
where 𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) is target variable (trading signal) in the time 𝑡, 𝑝(𝑡) and 𝑝(𝑡 + 1) are 
the ACP’s in current (𝑡) and next (𝑡 + 1) trading intervals respectively.  

kNN DT LR NB SVM

1:	Feature	engineering

…

Voting	ensemble

2:	Feature	selection	for	
each	individual	 classifier

3:	Multi-classifier	 system	
design
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This means that if the asset price in the next period increases, our strategy should 
generate a buy signal (1). If a financial instrument has already been acquired, it is nec-
essary to retain it. If the price decreases in the next period, then the strategy should give 
a sell signal (-1) if the asset is already acquired. If the asset is not bought by this time, 
you should refrain from buying. In other words, our system has an ambitious goal - to 
predict based on historical data whether the price in the next period will increase or 
decrease. 

We will assume that the initial capital of the investor is 𝑥(0). If the ‘buy’ signal is 
received, he buys the maximum possible number of shares 𝑑 𝑡 = 𝑣 𝑡 𝑝 𝑡 , where 
𝑣 𝑡  is the amount of acquired assets, which is restricted by condition 𝑑(𝑡) ≤ 𝑥(𝑡). If 
a ‘sell’ signal is received, he sells shares at the current price and his capital becomes 
𝑥 𝑡 = 𝑥 𝑡 − 1 + 𝑣 𝑡 𝑝(𝑡). Thus, the goal of the strategy is to maximize the sum 
𝑥 𝑡 + 𝑑(𝑡), therefore, its effectiveness can be estimated as 𝑒 = 𝑥 𝑛 + 𝑑 𝑛 /𝑥(0), 
where n is the number of trading periods. 

Also, we use several assumptions that are typical for research of this kind: 

• the volume of sales and purchases is quite small and does not affect the behavior of 
the market; 

• Transaction costs for operations are zero. 

4.2 Features Set 

We suggest including in feature set most popular indicators of technical analysis: Mov-
ing Average (MA), Moving Average Convergence Divergence (MACD), Relative 
Strength Index (RSI), Stochastic and signals of trading strategies based on these indi-
cators [3,4]. 

Trading signals based on MA are generated as follows: 
 

𝑆9: 𝑡 = −1, 𝑀𝐴=> 𝑡 − 1 > 𝑀𝐴=@ 𝑡 − 1 	∧ 𝑀𝐴=> 𝑡 < 𝑀𝐴=@ 𝑡
1, 𝑀𝐴=>(𝑡 − 1) < 𝑀𝐴=@ 𝑡 − 1 	∧ 𝑀𝐴=>(𝑡) > 𝑀𝐴=@ 𝑡

,											(2) 

 
where 𝑀𝐴=(𝑡) is mean average in time t, n is widows size. Usually, 𝑛> = 9 and 𝑛@ =
50, these values were determined empirically. 

Trading signals based on MA are calculated as follows: 
 

𝑆EFG 𝑡 =
−1, 𝑅𝑆𝐼(𝑡) > 𝑈𝐵
1, 𝑅𝑆𝐼(𝑡) < 𝐿𝐵 ,																																																																																		(3) 

where 		𝑅𝑆𝐼 𝑡 = 100[1 − >
>OEF(P)

], 𝑅𝑆 𝑡 = max
=

𝐴𝐺 /min
=
𝐴𝐿, 𝐴𝐺 is average gain, 

𝐴𝐿 is average loss, n is number of periods, 𝑈𝐵 and 𝐿𝐵 upper and lower limits respec-
tively. Usually, in technical analysis 𝑛 = 14, 𝑈𝐵 = 70, 𝐿𝐵 = 30. 

Trading signals based on MACD are calculated as follows: 
 
𝑆9:Z[ 𝑡 = −1, 𝐹 𝑡 − 1 > 𝑆 𝑡 − 1 	∧ 𝐹 𝑡 < 𝑆 𝑡 ∧ 𝐹 𝑡 > 0	 ∧ 𝑆 𝑡 > 0

1, 𝐹 𝑡 − 1 < 𝑆 𝑡 − 1 	∧ 𝐹 𝑡 > 𝑆 𝑡 ∧ 𝐹 𝑡 < 0	 ∧ 𝑆 𝑡 < 0,			(4) 
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where 𝐹 𝑡 = 𝐸𝑀𝐴=> 𝑡 − 𝐸𝑀𝐴=@(𝑡) is fast MACD line, 𝑆 𝑡 = 𝐸𝑀𝐴=^(𝐹(𝑡)) is 
slow MACD line, 𝐸𝑀𝐴= is exponential mean average with window size n. Typically, 
𝑛> = 13, 𝑛@ = 26, and 𝑛^ = 9. Useful information also can be extracted from MACD 
histogram: 𝐻𝑖𝑠𝑡 𝑡 = 𝑆 𝑡 − 𝐹(𝑡). 

Stochastic signals are calculated as follows: 
 

𝑆cPdef 𝑡 =
−1, %𝐾 𝑡 > 𝑈𝐵	 ∧ %𝐷(𝑡) > 𝑈𝐵
1, %𝐾 𝑡 < 𝐿𝐵	 ∧ %𝐷(𝑡) < 𝐿𝐵 ,																																										(5) 

 
where %𝐾 𝑡 = 100[𝑝 𝑡 − min

=>
𝑝(𝑡)]/[max

=>
𝑝 𝑡 − min

=>
𝑝(𝑡)], and %𝐷(𝑡) =

𝑀𝐴=@(%𝐾(𝑡)). Usually, 𝑛> = 14, 𝑛@ = 3, 𝑈𝐵 = 70, 𝐿𝐵 = 30. Sometimes also pa-
rameter ‘slow D’ is used 𝐷(𝑡) = 𝑀𝐴=^ %𝐷 𝑡  with 𝑛^ = 3. 
 

4.3 R/S Analysis 

The first algorithm runs, performed on the historical data of Alphabet Inc. (ticker 
GOOG), showed that the above indicators are not enough to build an effective trading 
strategy. Therefore, to search for relevant characteristics, an R/S analysis of this time 
series was conducted using the methodology described by Peters [15,16]. 

R/S analysis helps to determine the nature of price series by measuring its speed of 
diffusion. The speed of diffusion can be characterized by the variance [22]:  
 

𝑧 𝑡 + 𝜏 − 𝑧 𝑡 @ ~𝜏@m,																																																																																						(6) 
 
where 𝑧 𝑡 = log 𝑝 𝑡  is the log prices (ACP) at the time 𝑡, 𝜏 is the arbitrary time lag, 
and 〈⋯〉 is average over all 𝜏’s. The ~ means that this relationship turns into equality 
with some proportionality constant, 𝐻 is the Hurst exponent. For a price series exhibit-
ing geometric random walk, H=0.5, for a mean reverting series, H<0.5, and for a trend-
ing series H>0.5. In last case, a future data point is likely to be like a data point preced-
ing it, i.e. logarithms log 𝑝(𝑡) 𝑝(𝑡 − 1)  and log 𝑝(𝑡 + 1) 𝑝(𝑡)  likely will have the 
same signs. So, value of Hurst exponent is very valuable domain knowledge that can 
help to design effective algorithm.  

According to Peters [15,16] Hurst exponent, H, is calculated as asymptotic approxi-
mation of the rescaled range as a function of the time span of a time series as follows 

 

𝐸
𝑅(𝑛)
𝑆(𝑛)

= 𝐶𝑛m	as		𝑛 → ∞,																																																																													(7) 

 
where 𝑅(𝑛) is the rescaled range of first 𝑛 values of 𝑧 𝑡 , 𝑆 𝑛  is their standard devia-
tion, 𝐸[∙] is the expected value, 𝑛 is the number of data points in time series, and 𝐶 is a 
constant. Therefore, to find H, it is enough to find a regression 
log[R n S n ] = log C + H log n. 

The results of the Hurst exponent estimation for a series of daily closing prices 
(ACP) of Alphabet Inc. for 10 years (2007-2016) are shown in Fig. 2a, the dependence 
of its values on period length is shown in the Fig. 2b. As already mentioned, the value 
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H = 0.597> 0.5 means that the logarithms of successive price changes are likely to have 
the same sign. 

 

 
(a)                                                                     (b) 

Fig 2. Hurst exponent for the GOOG ACP time series. 

Fig. 3a shows the dependence of log 𝑝(𝑡 + 1) 𝑝(𝑡)  on log 𝑝(𝑡) 𝑝(𝑡 − 1) , a sig-
nificant part of the points is concentrated in areas II and IV. These values do not change 
sign. Fig. 3b shows the probability of changing the sign of the logarithm of the price 
increment, depending on the duration of the period: 

𝑃 𝜏 = 𝑃 log
𝑝 𝑡 + 𝜏
𝑝 𝑡

log
𝑝 𝑡

𝑝 𝑡 − 1
< 0 																																														(8) 

It follows from the Fig. 3b that this probability does not never reach the value 0.5, 
corresponding to complete uncertainty. Thus, the investigated price range is not entirely 
random. Moreover, for a one day period we have 𝑃(log |(PO>)

|(P)
log |(P)

|(P}>)
< 0) = 0.25, 

i.e. the probability that the sign of logarithm of the price ratio in the next day will not 
change is 0.75. It is very important domain knowledge, so we must include sign of 
log 𝑝(𝑡) 𝑝(𝑡 − 1)  in feature set. 

 

 
Fig 3. Probability of sign of logarithm of price ratio change. 
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Other useful information may be extracted form market indices, as well as loga-
rithms of their changes. Therefore, we will also include them in the features set. 

As result 41 features where selected for algorithm training including: 

• Values of price series (open, close, min and max prices, volume and ACP); 
• Technical indicators described in Section 4.2: 𝑀𝐴� 𝑡 , 𝑀𝐴�� 𝑡 , 𝑅𝑆𝐼 𝑡 , 𝐹 𝑡 , 𝑆 𝑡 ,  
𝐻𝑖𝑠𝑡 𝑡 , %𝐾 𝑡 , %𝐷 𝑡 , 𝐷(𝑡); 

• Trading signals described in Section 4.2: 𝑆9: 𝑡 , 𝑆9:Z[ 𝑡 , 𝑆EFG 𝑡 , 𝑆cPdef 𝑡 ; 
• Sign of log 𝑝(𝑡) 𝑝(𝑡 − 1) ; 
• Dow-Jones (ticker ^DJI), NASDAQ (^NDX) and S&P500 (^GSPC) indexes and 

signs of logarithms of their ratios.  

To train algorithm we used two-year (2015 and 2016) daily prices of Alphabet Inc. 
(ticker GOOG). This training set contains 504 samples of 41 features. Test set contains 
61 samples of daily data from January to March 2017.  

5 Features Selection for Individual Classifiers 

We use wrapping method based on genetic algorithm for features selection. The pro-
gram code was developed on the Python language and based on machine learning li-
brary scikit-learn [23]. Therefore, only the classifiers available in this library 
were used as basic (kNN, NB, LR, DT and SVM). 

Each classifier is coded by an array G with length N, which describes features set 
used for its training (N – quantity of features in the researched dataset). Array elements 
can take values 0 or 1. If the element is equal to 0, the corresponding feature is excluded 
from training set. Value 1 is assigned to all elements of a genotype G of individuals 
when initial population is generated. Thereby training of each classifier begins with full 
range of features. 

The best individual in population is always copied in new population without any 
changes (the principle of elitism). Selection of other individuals is rank-based. Mutation 
operation is applied with probability 𝑝� to randomly selected G-genotype element of 
selected individual, with its value replaced by opposite, i.e. 0 becomes 1, and 1 becomes 
0. Crossover operation is applied with probability of 𝑝e, it is implemented as exchange 
of randomly selected substring between two individuals. 

Fitness is calculated as average classification accuracy value: 
 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
																																											(9) 

 
where TP is true positives, FP is false positives (negatives classified as positives), TN 
is true negatives, and FN is false negatives (positives classified as negatives). 

On this stage of training the researcher determines a set of classifiers types which 
will be used for ensemble design (denote the number of types by M). The classifier of 
each type is trained according to the algorithm described above. The set of the trained 
classifiers is transferred to the following stage. 
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Results of individual classifiers training are given in Table 1. For all classifiers, the 
following parameters were used: the population size 40, number of generations 20, 
𝑝� = 0.5, 𝑝e = 0.5. Accuracy before training is calculated before start of a genetic 
algorithm (the features set includes all 41 features). Widely known models kNN, LR, 
NB, DT and SVM are used as the basic classifiers with the default parameters of scikit-
learn library. The average accuracy and subsequent confidence interval after training 
are given in the column with caption "Accuracy after wrapping". Also, Table 1 lists the 
number of selected features and precision / recall values. 

Table 1. Results of base classifiers training. 

Classifier Accuracy Number of  
selected  
features 

Precision / 
recall 

 
Before  
wrapping (N=41) 

After  
wrapping 

KNN 0.526 0.558 ± 0.100 21 0.581 / 0.632 
LR 0.536 0.585 ± 0.061 14 0.589 / 0.624 
NB 0.542 0.577 ± 0.020 16 0.598 / 0.614 
DT 0.530 0.530 ± 0.050 17 0.565 / 0.543 
SVM 0.552 0.552 ± 0.059 18 0.595 / 0.612 

 
As it follows from Table 1, features wrapping improves performance of classifiers, 

but their accuracy remains low, slightly bigger than 0.5. 

6 Multi-Classifier System Training 

At the third stage ensemble with majority voting rule is designed from the set of the 
classifiers trained at the previous stage. The GA is used again. The ensemble is coded 
by an array w of M real numbers, 𝑤� ≥ 0. They set value of weight coefficient to cor-
responding classifier. During creation of initial population, the elements 𝑤� are initial-
ized as random numbers with the normality condition 𝑤� = 1.  

Selection rules are the same as at the previous stage: elitism and rank selection. Mu-
tation operation is applied to all elements 𝑤𝑖 of the selected individual, their values are 
randomly changed by the uniformly distributed number (-0.1; 0.1). If negative wi is 
received as the result, it is replaced by 0. At the same time the normality condition isn’t 
satisfied. These parameters were determined during experimental launches of the algo-
rithm. Crossover operation is like the crossover at the first stage. Ensemble fitness is 
calculated as the accuracy. Object class CE is calculated as the weighed sum of out-
comes 𝑐� of individual classifiers 𝐶� = 𝑤�𝑐��∈9 . 

If the sign of 𝐶� matches the object type ( 𝐶� > 0 means that next price will growth, 
𝐶� < 0 means that this price will go down), then an object is considered as recognized 
correctly. Absolute value C�  corresponds with confidence of classification. 

After training, ensemble with accuracy 0.744, precision 0.698, and recall 0.880 was 
received. This accuracy value notably outperforms the accuracy of individual classifi-
ers.  
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7 Trading Strategy Results 

The results of back testing of generated strategy on daily prices of Alphabet Inc. shares 
(ticker GOOG) in two-year period 2015 – 2016 is presented on Fig. 4a. Proposed algo-
rithm gives the return 𝑒 = 𝑥 𝑛 + 𝑑 𝑛 𝑥(0) = 1.781, this result outperforms mar-
ket growth, which is 1.48. To check real possibility of proposed strategy to generate 
profit, another test was conducted on test set (Fig. 4b), return is e = 1.104. 

 

 
         (a) return on train set (back testing)                                     (b) return on test set 

Fig 4. Tests of generated trading strategy. 

To check prediction performance of proposed method, few other well-known en-
semble methods were tested on the same training and test set (Table 2). We tested five 
Bagging algorithms (on base DT, kNN, NB, LR, and SVC), three Adaptive Boosting 
algorithms (on base DT, SVC, and NB) and three other methods (Gradient Boosting, 
Random Forest, and ExtraTrees). 

Table 2. Comparison of different ensemble techniques. 

Method Training set Test set 
 accuracy precision recall accuracy precision recall 

BAGGING 
DT  0.988 0.985 0.992 0.508 0.643 0.474 
kNN  0.687 0.676 0.744 0.377 0.500 0.316 
NB  0.575 0.585 0.585 0.590 0.651 0.737 
LR  0.563 0.565 0.643 0.574 0.667 0.632 
SVC  0.575 0.585 0.589 0.492 0.667 0.368 
ADABOOST 
DT  1.000 1.000 1.000 0.459 0.609 0.368 
SVC  0.512 0.512 1.000 0.623 0.623 1.000 
NB  0.569 0.575 0.609 0.541 0.625 0.658 
OTHER TECHNIQUES 
Gradient Boosting  0.978 0.981 0.977 0.459 0.619 0.342 
Random Forest 0.980 0.992 0.969 0.492 0.684 0.342 
ExtraTrees 1.000 1.000 1.000 0.443 0.577 0.395 
Proposed Method 0.744 0.698 0.880 0.590 0.633 0.816 
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As follows from Table 2, some techniques outperform proposed method on training 
set, but it shows better results on the test set. It means that proposed method more ef-
fectively avoids overfitting. Better results on test set are shown by Bagging on base NB 
and Adaboosting on base SVC. Comparison of trading strategies based on these two 
techniques and proposed algorithm is presented on Fig.5. Presented data show that pro-
posed algorithm provides better results (return of Bagging + NB is 1.071, return of 
AdaBoost + SVC is 1.057, return of proposed method is 1.104). 

 

 
Fig 5. Comparison of three trading strategies. 

To check capability of proposed algorithm to generate profit for assets of different 
companies and industries, test on securities of other companies was carried. We used 
two-years (2015-2016) daily data of 10 companies from 5 industries for training and 
three months’ data (January-March 2017) for testing. Results are presented in Table 3, 
including accuracy of ensemble on train and test sets, stock prices changes 𝑝(𝑛)/𝑝(0), 
where n is the length of price series, and return e as it define above.  

The obtained results confirm that the presented algorithm ensures successful trade 
irrespective of the type of industry both in the growing and falling markets. This means 
that it can be used as the alpha model in the Portfolio Construction Model [1,2]. 

8 Parallel Implementation 

The proposed algorithm provides good results on daily data, it also can be used on data 
of shorter periods. In its essence, the proposed algorithm identifies the trading orders 
through reverse engineering of observed quotes. It is so called market microstructure 
trading, and many authors suggest that typical holding period for such kind of strategies 
should not exceed 10 minutes [24]. Moreover, return of discussed AT strategy can be 
improved, first, by including additional basic classifiers (e.g. different models of ANN), 
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and second, by increasing the size of the population and the number of generations on 
training stages. But time of calculations with presented parameters on 2-core 1.5 GHz 
CPU is approximately 20 min, it should be extremely reduced to work on shorter trad-
ing intervals with extra types of base classifiers and larger populations.   

Table 3. Performance of proposed method on different assets. 

Company Industry 
Ensemble      
accuracy 

Back testing  
(train set) 

Real testing  
(test set) 

  
Test 
set 

Train 
set 

Price 
change 

Return 
Price 
change 

Return 

Alphabet ITC 0.744 0.590 1.502 1.781 1.055 1.104 
Amgen Pharma 0.785 0.519 0.969 2.491 1.096 1.109 
Apple ITC 0.709 0.607 1.133 11.173 1.242 1.246 
Exxon Mobile Oil 0.714 0.541 0.932 8.300 0.799 1.168 
General Electric Manuf. 0.750 0.507 1.371 2.194 0.948 1.003 
Gilead Sciences Pharma 0.881 0.516 0.766 11.436 0.923 1.001 
HSBC Finance 0.889 0.508 0.997 7.296 1.024 1.042 
JPMorgan Chase Finance 0.775 0.514 1.497 10.453 1.013 1.040 
Shell Oil 0.765 0.581 0.981 2.913 0.972 1.013 
United Techn. Manuf. 0.877 0.505 1.019 1.970 1.018 1.027 
 

As it was noted above, algorithm was realized on Python programming language, 
because there are lot of tools of machine learning around it. It helps to reduce time for 
algorithm design and testing, but as Python code does not compiled to native CPU code, 
there are possible performance problems.  

The most applicable approach without code rewriting is usage of parallel capabilities 
of ipython library [25] and multi-core system. Several tests with different number 
of CPU cores were executed, to determine if it is possible to reach the required perfor-
mance within the ipython framework. Fig. 6 presents a test environment, which in-
cludes server with eight 3,5GHz CPU cores and client computer, both connected to 
trusted network.  

On remote multi-core computer, several instances of IPyton engine were started, ac-
cording with number of CPU cores used in test. The IPython engine is a regular Python 
interpreter that handles incoming and outgoing Python objects sent over a network con-
nection. All program modules required for computation were located on local disks of 
server. IPython controller and client interface were ran on client computer. 

As it follows from Fig.1 there are a few opportunities to parallelize program code. 
First, it is possible to parallelize individual classifiers training, because they are trained 
independently. Second, there is possibility to parallelize genetic algorithms where they 
used. Both features were used on base of IPython engine direct interface that provides 
the possibility directly manage computation on each engine (without automatic load 
balancing), because it required a small correction of the source code.  
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Results of tests performed on 8-core system are presented on Fig.7, which shows 
relative computational time (time of computation on one CPU core is 1). It is evident 
that the system with 4 cores provides the performance that satisfies the requirements of 
market microstructure trading (computational time is less than 10 minutes [24]). 
 

 
Fig 6. Test environment to evaluate algorithm performance 

 

 
Fig 7. Reduction in computation time as a function of the number of CPU cores 

However, from Fig. 7 it also follows that further possibilities for increasing perfor-
mance with this approach are exhausted. To compute in shorter time intervals (1 minute 
and less), it is necessary to implement the algorithm in the programming language that 
allows more efficient use of computer resources. 

CPU	core CPU	core CPU	core.	.	.

IPython
engine

IPython
engine

IPython
engine

IPython controller	/	Direct	interface

Client

Multi-core	computer

Client	computer

0,000

0,200

0,400

0,600

0,800

1,000

1,200

1 2 3 4 5 6 7 8

R
el

at
iv

e 
ti

m
e 

of
 c

om
pu

at
io

n

Number of CPU cores

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

272



 

9 Conclusion 

 
The presented results show that the proposed algorithm allows to build a trading strat-
egy that stably generates positive return regardless of the behavior of the stock market 
(growth or decline). This can be explained by the two reasons. The first is the domain 
knowledge, which was used for features engineering. The second is the use of the multi-
classifier system, which combines enough simple classifiers, it helps notable improve 
the prediction of price behavior. 

Note, that the ways to improve this algorithm are obvious. It is the inclusion of ad-
ditional classifier models in the ensemble, as well as an extension of the search space 
when using the genetic algorithm. 

Using the parallel capabilities of the ipython allows to reduce the computation time 
to 10 minutes or less. However, further performance improvement will require a tran-
sition to another programming language. 
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