
Parallel FDTD Solver with Optimal Topology
and Dynamic Balancing

Gleb Balykov

balykov.gleb@yandex.ru

Abstract. Finite-difference time-domain method (FDTD) is widely used
for modeling of computational electrodynamics by numerically solving
Maxwell’s equations and finding approximate solution at each time step.
The FDTD method was originally developed by K.Yee in 1966 and is still
improving to fulfill the needs of researchers. Highly parallel Maxwell’s
equations solvers based on the FDTD method allow to model sophisti-
cated structures on large grids with acceptable performance and required
accuracy. This article describes parallel FDTD solver for different dimen-
sions with comparison method for virtual topologies of computational
nodes’ grid, which allows to choose the best virtual topology for tar-
get architecture. Developed solver also incorporates dynamic balancing
of computations between computational nodes. Measurements for pre-
sented algorithms are provided for IBM Blue Gene/P supercomputer.
Further directions for optimizations are also discussed.

Key words: ComputationalElectrodynamics·FDTD·ParallelFDTD·
MPI

1 Overview

The FDTD method is widely used in electrodynamics solvers as well as its differ-
ent parallelization techniques. After it had originated in 1966 [1], it had a long
road from sequential algorithm to implementations of high-performance parallel
versions. This happened along with development of new hardware and architec-
tures, giving engineers opportunities to develop and evolve FDTD algorithm.

Three commonly used parallelization technologies for the FDTD method
are MPI, OpenMP and Cuda. Each of them serves its own purpose: MPI is
a standard for high-performance parallel computations on architectures with
distributed memory, OpenMP is a standard for high-performance parallel com-
putations on architectures with shared memory, Cuda is a parallel computing
platform and API for parallel computations on Nvidia GPUs.

The most common trend in parallelization of FDTD algorithm is still a combi-
nation of MPI and OpenMP, however, interest in massive parallel computations
rapidly shifts towards GPUs and computations on them and FDTD algorithm
is no exception. Cuda FDTD solvers give engineers opportunities to perform
electrodynamic modeling on systems varying from personal computers equipped

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

248

2 Gleb Balykov

with Nvidia GPUs to GPU clusters. But FDTD solvers developed for heteroge-
neous architectures with support of MPI, OpenMP and Cuda present the most
interest [2][3][4].

Load balancing in parallel FDTD algorithms allows to achieve the best per-
formance possible for current parameters of computation and characteristics of
the computational system. In general, load balancing couldn’t be done without
characteristics of the system, on which computations are performed [5]. However,
for homogeneous architectures load balancing could be performed statically be-
fore computations in some cases.

In this article, parallel FDTD solver with optimal topology and dynamic
balancing is introduced [6], which incorporates algorithm of choosing of optimal
virtual topologies for computational nodes’ grid for homogeneous systems and
dynamic balancing of computations between computational nodes. Solver has
UPML and TF/SF support and supports both complex and real values with dif-
ferent precision. Besides, solver supports Cuda and could perform computations
on GPUs. Combination of MPI and Cuda, which could be enabled separately,
allows to achieve significant speed up on a wide range of target architectures
and high portability of developed solver. In case of heterogeneous architectures,
dynamic balancing could also be applied. Two other possible solutions for het-
erogeneous architectures are also discussed.

2 Parallel Algorithm Description

Electrodynamics modeling could be performed in different dimensions, i.e. one-
dimensional modeling (1D), two-dimensional (2D) and three-dimensional (3D).
For all dimensions Cartesian computational grid is introduced: to be specific,
Ox axis is defined in case of 1D mode, Ox and Oy axes in case of 2D mode,
Ox,Oy and Oz axes in case of 3D mode. Yee grid [7] for field components is
then set, and all points of Yee grid are spread between all computational nodes.
In case of sequential solver, all points of Yee grid remain on the one and only
computational node. Thus, each point of Yee grid is assigned to one or another
computational node.

In parallel FDTD algorithm, described here, points of Yee grid are spread
between computational nodes in a very natural way: Yee grid is divided in rect-
angular chunks and each chunk is assigned to computational node. Besides, each
computational node has buffer points on its borders in order to store data from
neighboring computational nodes. This computational nodes’ grid maps directly
on MPI virtual topology, where each MPI process is launched on different com-
putational node and virtual topologies are simply MPI virtual topologies.

Share operations between computational nodes are performed at each time
step, so overall computational time is sum of computational time and share time
for each time step. Note that only maximum sum of computational time and
share time for each time step is taken into account, i.e. if one computational
node performs its computations much slower than other nodes, all other nodes
would have to wait for it to finish.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

249

Parallel FDTD Solver with Optimal Topology and Dynamic Balancing 3

Each computational node performs computations on chunk of Yee grid points
assigned to it and then performs share operations with all its neighboring com-
putational nodes. Computations are the same as for sequential algorithm and
could be performed either on CPU, or on GPU if computational node has one.

Share operations consist of the next steps. All directions in which share oper-
ations could be performed are considered one after another, and each computa-
tional node sends data in this directions, and also receives data from the opposite
directions at the same time. In case of send operation, data in border points of
node’s chunk is send, in case of receive, received data is stored in buffers.

For example, for 2D mode there are 8 directions — same as number of neigh-
bors of computational node: 1 direction — positive by Ox axis, 2 — positive
by Ox and Oy axes (diagonal), 3 — positive by Oy axis, 4 — negative by Ox
and positive by Oy axis (diagonal), 5 — negative by Ox axis, 6 — negative
by Ox and Oy axes (diagonal), 7 — negative by Oy axis, 8 — positive by Ox
and negative by Oy axis (diagonal). Fig. 1 on the left shows for computational
node marked with number 0 all 8 possible send directions, Fig. 1 on the right
shows send procedure in direction 1 for 9 computational nodes. Arrows show
direction in which data is sent, so each computational node receives data from
the opposite direction (in case it has such neighbor).

Fig. 1. 8 possible send directions for computational node marked 0 for 2D mode (on
the left) and send procedure for 9 computational nodes for 2D mode (on the right). For
a single computational node arrows show direction where data is sent, data is received
from the opposite direction.

Division of Yee grid in rectangular chunks could be done in different ways.
For 1D mode there is only one way — to divide Ox axis in chunks. In this case
computational nodes would perform share operation only along Ox axis. Let’s
call this division of Yee grid 1D-X virtual topology. Oy and Oz axes could be
divided the same way. Combining different axes divisions one can yield that for
2D mode there are 3 options: 2D-X, 2D-Y, 2D-XY virtual topologies, and for 3D
mode there are 7 options: 3D-X, 3D-Y, 3D-Z, 3D-XY, 3D-YZ, 3D-XZ, 3D-XYZ
virtual topologies. Fig. 2, 3, 4 show three kinds of virtual topologies for 2D
mode. On the left full Yee grid is shown divided in chunks with data shown in

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

250

4 Gleb Balykov

light gray and on the right data assigned to each computational node is shown
separately with required buffers shown in dark gray.

Fig. 2. 2D-XY virtual topology with full Yee grid divided in 9 chunks on the left and
chunks assigned to 9 computational nodes (light gray) with required buffers (dark gray)
on the right.

Fig. 3. 2D-X virtual topology with full Yee grid divided in 3 chunks on the left and
chunks assigned to 3 computational nodes (light gray) with required buffers (dark gray)
on the right.

There are two main cases for computational nodes and communicational net-
work: all computational nodes are the same by performance and share time for
all nodes is the same (homogeneous computing system), computational nodes
are not the same by performance or share time for nodes is not the same (het-
erogeneous computing system).

Let N be the number of computational nodes used in computations. Let’s
consider it being determined somehow for now (e.g. by user of the solver).

First, let’s consider case of homogeneous computing system for 2D and 3D
modes (for 1D mode there is only one kind of virtual topology).

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

251

Parallel FDTD Solver with Optimal Topology and Dynamic Balancing 5

Fig. 4. 2D-Y virtual topology with full Yee grid divided in 3 chunks on the left and
chunks assigned to 3 computational nodes (light gray) with required buffers (dark gray)
on the right.

2.1 2D Mode for Homogeneous Computing System

Let a > 0 be the size of Yee grid by Ox axis and b > 0 be the size of Yee grid
by Oy axis. Goal is to identify virtual topology to use for computations so that
the overall computational time is minimal.

Let virtual topology have size of n > 0 computational nodes by Ox axis and
m > 0 computational nodes by Oy axis, N = n ∗m. 2D-X virtual topology will
be used in case n = N and m = 1, 2D-Y topology in case n = 1 and m = N ,
otherwise 2D-XY virtual topology will be used, where n 6= 1 and m 6= 1.

Then, single computational node will have a1 = ba/nc grid points by Ox axis
in the chunk assigned to it and b1 = bb/mc grid points by Oy axis. Total size
of chunk assigned to computational node is a1 ∗ b1 = ba/nc ∗ bb/mc grid points.
Let’s consider only cases where a mod n = 0 and b mod m = 0, which leads to
the size of chunk being equal to

a1 ∗ b1 =
a

n
∗ b

m
=

a ∗ b
N

(1)

Computational time on single time step is proportional to number of Yee grid
points in chunk of computational node a1∗b1 and share time on a single time step
is proportional to the surface area of chunk a1+b1. Number of Yee grid points in
chunk is the same for all computational nodes, which means that computational
time should also be the same. This is accurate in case each computational node
performs same amount of computations, for example, this is not accurate if there
is a point wave source with sophisticated wave function calculated only on one
computational node and not calculated on others. In cases when nodes perform
different amounts of computations on the same amount of grid points, dynamic
information could be used and methods of solving such tasks are the same as for
heterogeneous systems and are discussed later.

Thus, the minimal overall computational time could be achieved by minimiz-
ing share time on a single time step:

a1 + b1 =
a

n
+

b

m
=

a

n
+

b ∗ n
N

= f(n) (2)

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

252

6 Gleb Balykov

Function f(n) has only one extremum for n > 0 — global minimum:

n0 =

√
a ∗N
b

(3)

m0 =
N

n0
=

N√
a∗N
b

=

√
b ∗N
a

(4)

However, obtained values n0 and m0 might not be integer or might not be
dividers of N , and a and b correspondingly. Values of n and m, which satisfy
this conditions, have to be found.

First, all pairs of n and m which satisfy next conditions have to be found:
n and m are dividers of N , and a and b correspondingly, and N = n ∗ m.
These pairs define set, which contains possible optimal values of n and m. In
order to find these pairs, n has to be set equal to all dividers of GCD(a,N),
including 1 and GCD(a,N) itself, and only those pairs have to be chosen for
which corresponding m = N/n is divider of b.

After that, two pairs (n′0,m
′
0) and (n′′0 ,m

′′
0) have to be found, for which for

n the next conditions are satisfied: n′0 < n0 and n′′0 ≥ n0, and there are no pairs
in the range (n′0;n′′0) (i.e., values n′0 and n′′0 are the closest possible to n0 from
different directions). From two pairs (n′0,m

′
0) and (n′′0 ,m

′′
0) one has to be chosen,

for which the value of f(n) is smaller. Chosen pair describes the optimal virtual
topology.

So, algorithm for choosing optimal virtual topology for homogeneous com-
putational system for defined a, b, N consists of the next steps:

– Identify all pairs (n,m), for which n is divider of a, m is divider of b, n∗m =
N .

– Find n0 using relation (3).
– Choose from the pairs found on the first step two (n′0,m

′
0) and (n′′0 ,m

′′
0), for

which n′0 < n0 and n′′0 ≥ n0, and there are no pairs in the range (n′0;n′′0).
From this two pairs one has to be chosen as optimal, for which the value of
f(n) is smaller.

There could be a case, when no appropriate pair is found (e.g., Yee grid could
not be divided in chunks for N computational nodes). In this case N should
be increased or decreased. Cases when a mod n 6= 0 or b mod m 6= 0 are not
discussed here because they require dynamic information about computational
system.

2.2 3D Mode for Homogeneous Computing System

Let a > 0 be the size of Yee grid by Ox axis, b > 0 be the size of Yee grid by Oy
axis and c > 0 be the size of Yee grid by Oz axis.

Let virtual topology have size of n > 0 computational nodes by Ox axis,
m > 0 computational nodes by Oy axis, k > 0 computational nodes by Oz axis,

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

253

Parallel FDTD Solver with Optimal Topology and Dynamic Balancing 7

N = n ∗m ∗ k. For example, 3D-X virtual topology will be used in case n = N ,
m = 1, k = 1.

Similarly to 2D mode, number of grid points in chunk assigned to compu-
tational node a1 ∗ b1 ∗ c1 is constant (in case a mod n = 0, b mod m = 0 and
c mod k = 0). In order to minimize overall computational time, the next function
f(n,m) has to be minimized (share time on a single time step is proportional to
f(n,m)):

f(n,m) =
a ∗ b
n ∗m

+
b ∗ c ∗ n

N
+

a ∗ c ∗m
N

+ 4 ∗ (
a

n
+

b

m
+

c ∗ n ∗m
N

) (5)

Again, all triples of (n,m, k) have to be identified, for which n is divider of
a, m is divider of b, k is divider of c, n∗m∗k = N . One of these triples describes
the optimal virtual topology. In order to find these triples n has to be set equal
to all dividers of GCD(a,N), including 1 and GCD(a,N) itself, then m has to
be set equal to all dividers of GCD(b,N), including 1 and GCD(b,N) itself, and
only those triples have to be chosen for which corresponding k = N/(n ∗m) will
be a divider of c.

Then for all m from found triples the minimum of function f(n,m) has to
be found. This leads to the next formulas for chosen m:

n0(m) =

√
a ∗N
m ∗ c

(6)

k0(m) =
N

n0(m) ∗m
(7)

Similarly to 2D mode, obtained values n0 and k0 might not be integer or
might not be dividers of N , and a and c correspondingly. n and k, which satisfy
this conditions, have to be found. Two triples (n′0,m, k′0) and (n′′0 ,m, k′′0) have
to be found, for which for n the next conditions are satisfied: n′0 < n0 and
n′′0 ≥ n0, and there are no triples in the range (n′0;n′′0) (i.e., values n′0 and n′′0 are
the closest possible to n0 from different directions). From two triples (n′0,m, k′0)
and (n′′0 ,m, k′′0) one has to be chosen, for which the value of f(n,m) is smaller.
Chosen triple describes the optimal virtual topology for specified m. After all
values of m are handled, triples, found for each m, have to be compared and one
triple with smallest f(n,m) has to be chosen as the optimal virtual topology.

So, algorithm for choosing optimal virtual topology for homogeneous com-
putational system for defined a, b, c, N consists of the next steps:

– Identify all triples (n,m, k), for which n is divider of a, m is divider of b, k
is divider of c, n ∗m ∗ k = N .

– For all allowed values for m find n0(m) using (6).
– Choose from the triples found on the first step two (n′0,m

′
0, k
′
0) and (n′′0 ,m

′′
0 , k
′′
0),

for which n′0 < n0 and n′′0 ≥ n0, and there are no triples in the range (n′0;n′′0).
From two triples one has to be chosen as optimal for specified m, for which
the value of f(n,m) is smaller.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

254

8 Gleb Balykov

– Virtual topologies found for each m have to be compared and one triple with
smallest f(n,m) has to be chosen as the optimal virtual topology.

2.3 Non-Specified Number of Computational Nodes for
Homogeneous Computing System

In case when number of computational nodes N is not specified, there are two
possible directions for optimization. First is to optimize by memory, i.e. choose
the smallest number of computational nodes, memory of which is capable to
store Yee grid. Second is to optimize by performance, i.e. choose the number of
computational nodes in such a way that time of computations is minimal. The
second problem requires dynamic information and methods of solving such tasks
are the same as for heterogeneous systems and are discussed later.

Let’s consider the first problem with optimization by memory for 2D mode.
Problem is to choose N so that for specified a and b the number of Yee grid
points per node ab

N is maximal.
First the size of memory of a single computational node S has to be identified.

The amount of memory occupied on a single computational node is F (a, b,N):

F (a, b, n,m) = k1 ∗ (
a ∗ b
n ∗m

) + k2 ∗ (
a

n
+

b

m
) + k3 (8)

where s is number of Yee grid points and k1, k2, k3 — constants, which are
defined by parameters of computation statically (during compilation of solver).
Let’s perform transformation in order to remove dependency on virtual topology.

k1 ∗ (
a ∗ b
n ∗m

) + k2 ∗ (
a

n
+

b

m
) + k3 < k1 ∗ (

a ∗ b
n ∗m

) + k2 ∗ (a + b) + k3 (9)

Let’s consider F1(a, b,N):

F1(a, b,N) = k1 ∗ (
a ∗ b
N

) + k2 ∗ (a + b) + k3 (10)

Ns has to be found, for which F1(a, b,N) is equal to S for specified a and b:

Ns =
k1 ∗ a ∗ b

S − k3 − k2 ∗ (a + b)
(11)

An answer N0 is the first divider of a ∗ b in ascending order, which will be
greater or equal to Ns: N0 ≥ Ns and F1(a, b,N0) ≤ F1(a, b,Ns). Different choices
of virtual topology will not affect the found answer, because it was taken into
account. For 3D mode N0 could be obtained in a similar way.

2.4 Heterogeneous Computing System

In case of heterogeneous systems, the algorithms described above couldn’t be
applied because either computational time on different computational nodes is

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

255

Parallel FDTD Solver with Optimal Topology and Dynamic Balancing 9

proportional to number of grid points in chunk with different proportional co-
efficient, or share time has different proportional coefficients for different com-
putational nodes. In such cases more sophisticated methods should be applied.
Each one of the methods described below could give results, but the best option
would be to use their combination.

Dynamic Balancing (Dynamic Redistribution). Dynamic redistribution
of Yee grid points between computational nodes will allow to assign chunks of
different sizes for a single computational node during computations (opposed
to previously described distribution before computations). This process could
be triggered based on some dynamic information, i.e. computation time and
share time of each computational node. Thus, computational nodes, which have
higher performance, could be dynamically assigned larger chunks and compu-
tational nodes with less performance — smaller chunks. One drawback of this
method is that redistribution process takes time and will affect computational
time. However, benefit of this method is the ability to distribute Yee grid points
between computational nodes more efficiently without the need to identify opti-
mal virtual topology before computations.

In developed solver dynamic balancing was implemented for 1D-X, 2D-X,
2D-Y, 3D-X, 3D-Y and 3D-Z virtual topologies. Before start of computations
some virtual topology has to be chosen (machine learning or saved dynamic
profile could be used to choose initial virtual topology in future). Then after M
time steps, during which computational time T was gathered, redistribution is
performed. Let’s consider 2D-X case. Total size of grid is a ∗ b, chunk of grid
points, assigned to i (i ≥ 0, i < N) computational node has size Si = ai ∗ b and

∑
i

ai = a (12)

Performance of i computational node is calculated like this

perfi =
ai ∗ b ∗M

Ti
(13)

where Ti is computational time of i computational node for M time steps.
Then, new a′i is calculated

a′i =
[a ∗ perfi∑

i perfi

]
(14)

In case a′ = a−
∑

i a
′
i > 0, a′ is spread between all computational nodes. After

this procedure computational nodes will have chunks with new sizes, and distri-
bution of computations between computational nodes will be better in terms of
reduction of total computational time. This procedure could be repeated later
to further improve distribution of computations.

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

256

10 Gleb Balykov

Saving the Profiling Data. During first computation on the computational
system profiling data could be saved for each computational node as a recom-
mendation for virtual topology chooser. On the second launch, this saved data
could be used to identify optimal virtual topology. Drawback of this method is
the need to perform first computation with gathering of dynamic information in
order to save it later. This process takes time and will affect computational time.
However, starting from the second computation launch virtual topology will be
chosen more optimally. Besides, even the second computation launch could also
gather dynamic information and update the saved one. So, the benefit of this
method is that after K computation launches with profiling K + 1 computation
launch will use the most optimal virtual topology from all, which could be cho-
sen according to saved dynamic information. Besides, K+1 computation launch
could be performed without profiling, thus, without performance degradation.

Some modification of this method is to perform benchmarking of computa-
tional system before computations, when profiling data is gathered not on some
random computations but on one which is optimized to save more relevant dy-
namic data. Such a benchmark then has to be found. This method is to be
discussed in detail in further work.

Machine Learning. Neural network could be used in this method, trained on
characteristics of different computational systems and optimal virtual topolo-
gies. Then, before computation on some computational system optimal virtual
topology will be found using trained neural network. Benefit of this method is
the lack of need to do additional activities during computations because optimal
virtual topology is identified before first computation on the system. However,
drawback is that identified virtual topology could be not the most optimal even
for well trained neural network. This method is to be discussed in detail in
further work.

Table 1. Measurements for 2D mode for 4 computational nodes for Yee grid with size
a = 256 and b = 256 and 10000 time steps.

Virtual topology Value of f(n) Execution time, seconds

2D-X with n = 4,m = 1 320 3015.16

2D-XY with n = 2,m = 2 256 3001.69

Table 2. Measurements for 2D mode for 4 computational nodes for Yee grid with size
a = 8192 and b = 8 and 10000 time steps.

Virtual topology Value of f(n) Execution time, seconds

2D-X with n = 4,m = 1 2056 2605.45

2D-XY with n = 2,m = 2 4100 3192.83

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

257

Parallel FDTD Solver with Optimal Topology and Dynamic Balancing 11

Table 3. Measurements for 3D mode for 8 computational nodes for Yee grid with size
a = 64, b = 64 and c = 64 and 1000 time steps.

Virtual topology Value of f(n,m) Execution time, seconds

3D-X with n = 8,m = 1, k = 1 5664 2106.54

3D-XY with n = 4,m = 2, k = 1 4032 2090.29

3D-XYZ with n = 8,m = 1, k = 1 3456 2069.23

Table 4. Measurements for 3D mode for 8 computational nodes for Yee grid with size
a = 4096, b = 8 and c = 8 and 1000 time steps.

Virtual topology Value of f(n,m) Execution time, seconds

3D-X with n = 8,m = 1, k = 1 10368 1587.31

3D-XY with n = 4,m = 2, k = 1 16464 1815.29

3D-XYZ with n = 2,m = 2, k = 2 24624 2069.98

3 Measurements

All measurements were performed on IBM Blue Gene/P supercomputer for dif-
ferent virtual topologies. IBM Blue Gene/P is a massively parallel computational
system. It contains 8192 calculation cores (2048 calculation nodes, 4 core each)
with peak performance at 27.9 tflops. It supports both MPI and OpenMP tech-
nologies. Single calculation core is a PowerPC 450 with frequency at 850 MHz
having 4GB of RAM. Communicational network is a three-dimensional torus and
unites all the nodes. Single node has 6 bidirectional connections with 6 neighbors
and throughput of each of these 12 connections is 425 MB/s. Blue Gene/P has
GCC 4.2 compiler.

Basic FDTD computation was chosen as a benchmark (no PML, no TF/SF,
point wave source for each computational node). In each computation virtual
topology was mapped on computational nodes of Blue Gene/P in such a way
that virtual topology matches physical topology, so, computational nodes, which
are neighbors in virtual topology, will be neighbors in physical topology too, and
no additional share expenses arise.

As tables 1, 2, 3 and 4 show, the smallest computational time is achieved
with the virtual topology that is optimal for current grid size, and variation of
computational times for different virtual topologies could be significant, varying
from 0.5% to 18.4% for 2D mode and from 1.8% to 23.3% for 3D mode for
different Yee grid sizes, which could be significant for long running tasks. These
results depend on the size of Yee grid and variation could be even higher for
larger grids. Besides, obtained results depend heavily on the target architecture,
and for architectures where share operations are heavy in terms of time, results
could be even more significant.

Measurements for dynamic balancing for two computational nodes for 2D
mode and 2D-X virtual topology for Yee grid with size a = 1000 and b = 1000
were performed for two cases: 0 computational node has point wave source,
nodes don’t have point wave sources, i.e. the difference between two cases is

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

258

12 Gleb Balykov

the calculation of wave function for 0 node. After some execution time Yee grid
appeared to be divided in chunks in the next way. In the first case, 0 node
had chunk with size of 47% of total Yee grid size and 1 node had chunk with
size of 53% of total Yee grid size. In the second case computational nodes had
chunks of the same size. This proves that dynamic balancing allows to spread
computations optimally even for homogeneous architectures, if each node has to
perform different amount of computations.

4 Conclusion

Developed FDTD solver provides features for optimal computations distribu-
tion between computational nodes. Measurements prove described algorithm of
choosing of optimal virtual topology for homogeneous architectures and that
there is no one ”silver bullet” virtual topology to choose for different Yee grid
sizes. This allows solver to be more efficient in terms of computational time. Be-
sides, dynamic balancing was shown to spread computations optimally through
all computational nodes for homogeneous target architectures in case of different
amount of computations on each computational node. In further work dynamic
balancing would be improved for both homogeneous and heterogeneous target
architectures and other dynamic methods would be described in detail.

References

1. Yee, K.S.: Numerical solution of initial boundary value problems involving maxwell’s
equations in isotropic media. IEEE Transactions on Antennas and Propagation.
Vol.14, No.3, pp. 303–307 (1966)

2. Zunoubi, M. R., Payne, J., Roach, W. P.: CUDA-MPI-FDTD implementation of
Maxwell’s equations in general dispersive media. Proceedings of the SPIE, Vol.
8221, id. 822115 (2012)

3. Zakirov, A.V., Levchenko, V.D., Perepelkina, A.Yu., Zempo, Y.: High perfor-
mance FDTD code implementation for GPGPU supercomputers. Keldysh Institute
Preprints, No.44 (2016)

4. He, B., Tang, L., Xie, J., Wang, X., Song, A.: Parallel numerical simulations of three-
dimensional electromagnetic radiation with MPI-CUDA paradigms. Mathematical
Problems in Engineering. Vol.2015, Article ID 823426 (2015)

5. Shams, R., Sadeghi, P.: On optimization of finite-difference time-domain (FDTD)
computation on heterogeneous and GPU clusters. Journal of Parallel and Dis-
tributed Computing, vol. 71, no. 4, pp. 584–593 (2011)

6. Parallel FDTD solver, https://github.com/zer011b/fdtd3d
7. Taflove, A., Hagness S. C.: Computational Electrodynamics: The Finite-difference

Timedomain Method. Artech House, 3rd ed. (2000)

Суперкомпьютерные дни в России 2017 // Russian Supercomputing Days 2017 // RussianSCDays.org

259

