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Abstract. The quantum trajectory method is the most popular and
widely used algorithm to simulate the evolution of an openN -dimensional
quantum system. The key idea is to unravel Markovian equation describ-
ing evolution of the system density operator (a N×N Hermitian matrix)
into a set of independent stochastic realizations obtained by propagat-
ing system wave function (a complex N vector). Since the method de-
creases the scaling of the computational problem from N2 to N , it is
especially efficient for the systems of large dimensions. Intrinsic paral-
lelism that is characteristic to all Monte Carlo schemes allows for efficient
implementations of quantum trajectories on a high-performance compu-
tational cluster. One of the core mathematical operations involved into
the method is the matrix-vector multiplication. We propose to improve
the algorithm by grouping trajectories into matrices and substituting a
set of matrix-vector multiplications with a single matrix-matrix multi-
plication. By using a testbed model with 1024 states, we demonstrate
that, even in the presence of intrinsic asynchrony between different tra-
jectories, this step leads to a 17-fold acceleration on the 4-socket 96-core
Intel Broadwell CPU.

Keywords: Open quantum systems · Quantum trajectory method ·
High-performance computing · Supercomputing technologies · Parallel
computing · Performance analysis and optimization

1 Introduction

Physics of open quantum systems attracts a lot of attention during the last
decade. This is because it considers quantum systems in their natural habitats,
i.e., when the former interact with their environments [1]. The growing interest to
open systems was initiated by the rise of quantum technologies and is maintained
by ever-increasing number of real-life applications of quantum systems that a
decade ago existed on paper only. It is evident that in order to blueprint a
realistic quantum device, effects of its interaction with environment should be
taken into account.
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The most elaborated, both from mathematical and physical point views,
approach to model open quantum system is the Lindblad formalism, which is
based on the idea of quantum dynamical semi-groups and culminates into the
Lindblad equation [2]. This approach is very popular in such fields as quantum
optics, optomechanics, cavity quantum electrodynamics, and cold atom physics
[3]. Straightforward numerical solution of the Lindblad equation (and thus ob-
taining the asymptotic state of the model of interest) is not feasible when the
model dimension N – that is the dimension of the Hilbert space the model lives
in – is larger than 500. When the model Hamiltonian is explicitly time-periodic,
i.e., the system is additionally modulated in time [4], evaluation of the system
non-equilibrium asymptotic state involves numerical integration of the Lindblad
equation in time. It is hardly doable even when N w 400.

Model with N = 400 states may still be too small to describe real-life quan-
tum systems. It is possible to go beyond this limit by unraveling the Lindblad
equation into a set of stochastic realizations, called “quantum trajectories” [3,5].
This method allows transform the problem of the numerical solution of the Lind-
blad equation into a task of statistical sampling over quantum trajectories, with
every trajectory specified by a complex vector of the size N . The price to pay for
the reduction from N2 to N is that one now has to sample over many realizations.

In our work [6] we presented an implementation of the quantum trajectory
method that allowed us to resolve non-equilibrium asymptotic states (which we
called “quantum attractors’) of a periodically modulated quantum model. We
demonstrated that a regular high-performance cluster (with up to 512 compu-
tational cores) is enough to sample such attractors with high accuracy for the
model of the dimension N ≈ 2000. The aim of this paper is to investigate the
potential for the further optimization of the implementation and improvement
of its performance.

Like in a number of other numerical software, a substantial advance can be
potentially reached by increasing parallelism on each level of computing (pro-
cesses, threads, SIMD, instruction level parallelism), as well as by improving
memory usage efficiency. Since the quantum trajectory method belongs to the
Monte Carlo family, it should possess high intrinsic parallelism. Note that due
to the nature of the method, intrinsic stochastic steps – quantum jumps – can
occur at different random times for different trajectories, and their number (for
a fixed time interval) can vary too. Nevertheless, numerical experiments indicate
the absence of a substantial variation, which together with the opportunity of
merging a set of trajectories into a single computational task for parallel com-
puting, leads to a small imbalance of computational load, order 5% only. At the
same time, an empiric choice of the ratio between the number of the employed
processes and threads of the hybrid MPI + OpenMP parallelization scheme,
on the contrary, significantly affects the total computation time. The next level
of parallelism is related with vectorization of computing and effective usage of
wide vector registries and AVX2-instructions in modern processors. It is essential
that the main computational core of the method that consumes > 95% of the
total time is the dense matrix-vector multiplication, which can be vectorized.
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In that respect, our code makes use of the high performance implementation
of the matrix-vector multiplication from the Intel Math Kernel Library (MKL).
Summarizing the above, there is a considerable room for exploiting parallelism
in quantum trajectory method.

Improving performance of computations here could be achieved by reducing
the number of calls to the main memory and by a more efficient usage of the
cache. The most straightforward idea along these lines would be a substitution of
the groups of matrix-vector multiplications to single matrix-matrix multiplica-
tions. In [7] it was demonstrated, that such optimization can substantially reduce
computational cost, at least for the addressed class of problems. There, merging
was achieved by substituting propagation of separate vectors with propagation
of a matrix composed of them. In the case of quantum trajectories, there is an
asynchrony between different trajectories in times of jumps and such merging is
not so straightforward. Here we propose a solution to the problem that allows
to attain the same results but at a smaller time, as a rule. We will demonstrate
the way to organize computing, focusing on a matrix multiplication, where ap-
propriate.

The paper is organized as follows. In section 2 we give a mathematical model
– a system of indistinguishable interacting bosons hopping between the sites of a
periodically rocked dimer. In section 3 the description of the quantum trajectory
method is given. In section 4 we present the optimized method. Numerical results
and performance analysis are given in section 5. Section 6 concludes the paper.

2 Model

The Lindblad equation is described by its generator L, which has a universal
structure [2]:

%̇ = L(%) = −i[H(t), %] +

K∑
k=1

γk(t) · Dk(%),

Dk(%) = Ak%V
†
k −

1

2
{A†kAk, %}. (1)

Here % is the system density matrix, while the set of quantum jump operators,
Ak, k = 1, ...,K, captures the action of the environment on the system. Namely,
it acts through K ’channels’ with time-dependent (in general) rates γk. Finally,
[., .] and {., .} denote commutator and anti-commutator, respectively.

As a testbed model we use a system of N − 1 indistinguishable interacting
bosons hopping over a periodically rocked dimer [8]. The system Hamiltonian is

H(t) =− J
(
b†1b2 + b†2b1

)
+

U

2(N − 1)

∑
g=1,2

ng (ng − 1)

+ ε(t) (n2 − n1) (2)

where J is the tunneling amplitude, U is the interaction strength, and ε(t)
presents the modulation of the on-site potential difference. In particular, we
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choose ε(t) = ε(t+ T ) = µ0 + µ1θ(ωt), where µ0 and µ1 are static and dynamic
energy offsets between the two sites, respectively, and θ(x) is a step-like periodic
function of period one. Here, bg and b†g are the annihilation and creation operators

on site g ∈ {1, 2}, while ng = b†gbg is the particle number operator. The system
Hilbert space has dimension N and can be spanned with the Fock basis vectors,
labeled by the number of boson on the first site t, {|t + 1〉}, t = 0, ..., N − 1.
So, the model has N states and its size is controlled by the total number of
bosons. Hamiltonian (2) has been used for theoretical studies and was already
implemented in experiments [8]. On top, this is a nicely scalable model; its
dimension N can be incremented by simply adding one boson.

We use a single jump operator [9,10],

A = (b†1 + b†2)(b1 − b2), (3)

which tries to ‘synchronize’ the dynamics on the sites by constantly recycling
anti-symmetric out-phase modes into the symmetric in-phase ones. The coupling
constant γ = (N − 1)γ0 is assumed to be time-independent.

3 Quantum Trajectory Method

3.1 Base Algorithm

Solution to the Lindblad equation (1) for the density matrix of an open system
can be unraveled into an ensemble of quantum trajectories, which are governed
by the equation

|ψ̇〉 = −iH̃|ψ〉, (4)

where |ψ〉 is the state vector of dimension N , and H̃ = H − i
2

∑
k γkA

∗
kAk is the

non-Hermitian Hamiltonian, constructed from the original system Hamiltonian
and jump operators.

The method is implemented as follows (see Algorithm 1). Initially, the code
loads the model and method parameters: system size N , number of quantum
trajectories for sampling L, end time Tmax, the matrices for exponential oper-
ators expM (lines 12). Initial conditions |ψ0〉 are chosen such that the norm of
the vector equals 1; this corresponds to the initial condition %0 = |ψ0〉〈ψ0| for
the original Lindblad equation (1). The main computational cycle (lines 312)
contains numerical propagation of L vectors {|ψl(t)〉; l = 1, .., L} in time within
the interval [0;Tmax].

The details of propagation follow (lines 411).

1. Choose a random number η from the uniform distribution on [0, 1] (line 5).
2. Perform propagation in time τ (lines 69), until the following is satisfied:
‖|ψ(t)〉‖2 = η. Reaching it is ensured by the special form of the Hamiltonian
H̃ that monotonously decreases the norm.

3. Make quantum jump (line 10).

3.1. Normalize the state vector again |ψ(t)〉 = |ψ(t)〉
‖|ψ(t)〉‖ .
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Algorithm 1 : Quantum trajectory method

1: load the system and method parameters (N, L, Tmax, ExpM)
2: for l = 1 to L do
3: for t = 0 to Tmax do
4: generate η = U [0, 1]
5: while ‖|ψ(t)〉‖2 > η do
6: calculate tnext

7: propagate |ψ(t)〉 on [tcur, tnext]
8: end while
9: makes quantum jump

10: end for
11: end for
12: calculate the final density matrix
13: release memory

3.2. Calculate probabilities of selecting quantum jump channels [p1, .., pK ],

pk = γk‖Ak|ψ(t)〉‖2∑K
i=1 γi‖Ak|ψ(t)〉‖2

. Therefore, we split a unit interval in K parts of

the lengths p1, .., pK , respectively.
3.3. Choose random ξ from a uniform distribution on [0, 1]. Determine the

corresponding m-th quantum channel such that ξ ∈ pm, and complete

the quantum jump according to: |ψ(t)〉 = Am|ψ(t)〉
‖Am|ψ(t)〉‖ .

As a result, we obtain an ensemble of quantum trajectories {|ψl(t)〉; t ∈
[0, Tmax]; l = 1, .., L}. The density matrix, approximating an exact solution to
Eq.(1) at an arbitrary time t ∈ [0;Tmax], can be unraveled by averaging over the
trajectories:

ρ̃L(t) =
1

L

L∑
l=1

|ψl(t)〉〈ψl(t)|
‖|ψl(t)〉‖2

(5)

It is proved that limL→∞ ρ̃L(t) = ρ(t) [2].

3.2 Exponential Operators

The most computationally intensive part of the described algorithm is propa-
gating a vector |ψ(t)〉 until the condition of a jump is met (line 8). This step
can be substantially accelerated, taking into account that H̃ is constant between
switching of θ(t). There, propagation is explicitly described by an exponential
operator [6]:

B(∆t) = e−iH̃∆t,

which does not depend on a particular state |ψ(t)〉, and therefore allows for
calculating evolution of an arbitrary vector over time ∆t. To implement a high-
precision approach to resoltion of the jump moments, one can pre-calculate a set
of exponential operators, for different time steps. The maximal time step should
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be chosen to be in an integer ratio to the time interval T , where the Hamiltonian
H̃ is constant: T = k∆t1, k ∈ Z. For finer timescales one defines:

{B(∆ti)|∆ti = 2∆ti+1 : i = 1,m− 1}

The particular value of ∆t1 should be chosen as to decrease the computation
time between quantum jumps, and so it is model and parameter dependent. In
our experience, a “rule of thumb” defines the best value of ∆t1 as that makes
‖|ψ(t)〉‖ decreasing by 30−60% under action of B(∆t1). The depth of timescale
hierarchy, m, should be chosen with regard to the required precision for the
resolution of jump moments, which is ≤ ∆tm.

Propagation of the trajectory untill the next jump implements bisection
method (Algorithm 2). It is initialized with the a current time t, state vec-
tor |ψ(t)〉 and random η. The first step takes s = 1, δt = ∆t1 (line 1), next steps
take values of s and δt, obtained in the end of the preceding step. The moment
of jump is found as follows:

1. The main cycle of the algorithm (lines 2-13) implements propagation with a
given time step until quantum jump conditions are fulfilled, ‖|ψ(t)〉‖2 ≤ η.

2. The value of the state vector at t+ δt is calculated (line 3).
3. If |ψ(t+ δt)〉 fulfills the jump condition, the time of the jump is rsolved with

higher precision. This is achieved by taking a smaller time step (line 5), if
the minimal one, tm, has not been reached yet. Otherwise, the time of the
jump is determined with the maximal possible precision.

4. If the jump condition is not fulfilled, or its moment is found with maximal
precision, then the current time and state vector values are renewed (lines
7-8). Then, the maximal time step, ∆ts, to be used for the next iteration of
the algorithm (lines 9-11), is chosen such that the time to the next switch of
the Hamiltonian is the multiple of ∆ts.

4 Optimized Algorithm

Algorithm 2 that propagates the state vector |ψ(t)〉 to the next time moment
t + δt, involves the multiplication of the vector with the matrix of the expo-
nential operator. Our idea of accelerating the algorithm is to cluster (group)
the trajectories so that multiple independent matrix-vector multiplications are
substituted with a single matrix-matrix multiplication, which, for example, for
matrix dimension of the order of 103 reduces computational time by several-fold.
The main challenge lies in clustering of the vectors in groups; that is because mo-
ments of next quantum jumps for the trajectories are different and independent.
It should also be noted that while Hamiltonian matrices for quantum dynamics
are often sparse, the matrices for exponential operators are not.

Below we present the detailed description of our solution. The task is for-
mulated as the propagation of the group of vectors |ψl(t)〉, l = 1, .., L′ over the
time interval [tH̃ , tH̃ + TH̃ ], where the Hamiltonian H̃ is constant. As a result,
all vectors have to be propagated to the end of the specified time interval.
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Algorithm 2 : Finding the moment of a quantum jump with the set of expo-
nential operators

1: δt = ∆t1
2: s = 1
3: while ‖|ψ(t)〉‖2 > η do
4: |µ〉 = B(ts)|ψ(t)〉
5: if ‖|µ〉‖2 ≤ η & s < m then
6: s = s+ 1
7: else
8: |ψ(t)〉 = |µ〉
9: t = t+ δt

10: while s > 1 & δt = k ∗∆ts−1, k ∈ Z+ do
11: s = s− 1
12: δt = ∆ts
13: end while
14: end if
15: end while

For simplicity of description and without loss of generality, we consider the
set of operators {B(∆ti)|k∆t1 = TH̃ , k ∈ Z;∆ti = 2∆ti+1 : i = 1,m− 1}. The

group of vectors is stored in the matrix form V ∈ CL
′×N , where each vector

is given by a separate row. Here L′ is the number of vectors in a group, N is
the dimension (number of states) of the model quantum system, V [l] is the l-th
state vector, and ‖V [l]‖ is its norm.

Each l-th vector is given additional characteristics.

– η[l], a random number from a uniform distribution, U [0, 1], which determines
the value of the norm, when a quantum jump occurs.

– d[l] is an integer number that sets a current time within the propagation
interval, when Hamiltonian remains constant, [tH̃ , tH̃ + TH̃ ]. d[l] = 0 corre-
sponds to the beginning of the interval. Increasing d[l] by 1 corresponds to
increasing current time by ∆tm. d[l] = k ∗ 2m−1 corresponds to the end of
the time interval, tH̃ + TH̃ .

Matrix V has a specific structure and contains 4 blocks of rows of distinct
classes. In course of the run, vectors are moved from one block to another (change
their class), and the sizes of blocks change.

Start of the propagation from the left boundary of the interval [tH̃ , tH̃ +TH̃ ]
is accompanied by the following initialization.

– All vectors belong to class A.
– If tH̃ = 0, then for all vectors the values η[l] = U [0, 1] are calculated. Other-

wise η[l] is brought forward from the previous time interval.
– For all vectors d[l] = 0 is set.

Propagation is performed in the forward step (Algorithm 3) and backward
step (Algorithm 4). The forward step is repeated until there remain trajectories
from V A class. Otherwise, the backward step is performed once.
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Table 1. The structure of the matrix

Class/Block Description

V A, rows
(1)− (A)

Vectors, which could experience a jump
until the right boundary of the interval is reached [tH̃ , tH̃ + TH̃ ],
but an estimate of the time of jump is missing.

V B, rows
(A+ 1)− (A+B)

Vectors, which will experience a jump
during the time interval ∆t1.

V C, rows
(A+B + 1)−
(A+B + C)

Vectors, which cannot experience a jump
before the right boundary of the time interval is reached [tH̃ , tH̃ + TH̃ ].

V D, rows
(A+B + C + 1)−
(A+B + C +D = L′)

Vectors, propagated to the right
boundary of the time interval [tH̃ , tH̃ + TH̃ ].

The forward step of the algorithm finds the next moment for the quantum
jump for all vectors of class A. It is specified in Algorithm 3.

1. The first part of the algorithm (lines 1-17) propagates each vector V A by a
maximally possible number of steps ∆t1, which does not lead to the quantum
jump yet. For that a vector is sequentially multiplied by B1, but before it is
renewed, one of the following is checked.

1.1. Next product produces the quantum jump condition. Then, the vector
is moved to block V B (lines 4-6).

1.2. Next product does not lead to quantum jump and will not allow the cur-
rent time to reach the right boundary of the interval [tH̃ , tH̃+TH̃ ]. Then,
the value of the vector should be renewed, and propagation continued
(rows 7-9).

1.3. Next product does not lead to quantum jumps condition, but the current
time becomes equal to the right boundary of the interval [tH̃ , tH̃ + TH̃ ].
In that case, the vector should be renewed and moved to block V D (lines
10-12).

1.4. Next product does not lead to quantum jump, but the current time
becomes greater then the right boundary of the interval [tH̃ , tH̃ + TH̃ ].
Then, the vector should be moved to block V C (rows 13-15).

On completion of the first part of the algorithm block A becomes empty.

2. The second part of the algorithm (rows 18-34) searches for the quantum jump
times for vectors from block V B, provided that it occurs within [tH̃ , tH̃+TH̃ ].
Namely, each vector from V B is multiplied by the matrices of the exponential
operators, Bi, i = 2..m, one by one. Processing the result V Bnext[l] of the
multiplication of each vector by each matrix is determined by the following.

2.1. If a quantum jump occurs for V Bnext[l], the result is not saved (lines
21-23). In this case, we can either find a moment for the quantum jump
to a higher precision or make the last move towards time ∆tm in the
third part of the algorithm.
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Algorithm 3 : Forward step of the algorithm

1: while A > 0 do
2: V Anext = B1 × V A
3: for l = 1; l < A; l = l + 1 do
4: if ‖V Anext[l]‖2 < η[l] then move V A[l] to V B
5: end if
6: if ‖V Anext[l]‖2 ≥ η[l] & d[l] + 2m−1 < k ∗ 2m−1 then
7: V A[l] = V Anext[l]d[l] = d[l] + 2m−1;
8: end if
9: if ‖V Anext[l]‖2 ≥ η[l] & d[l] + 2m−1 == k ∗ 2m−1 then

10: V A[l] = V Anext[l]; d[l] = 0;
11: move V A[l] to V D
12: end if
13: if ‖V Anext[l]‖2 ≥ η[l] & d[l] + 2m−1 > k ∗ 2m−1 then
14: move V A[l] to V C
15: end if
16: end for
17: end while
18: for i = 2; i ≤ m; i = i+ 1 do
19: V Bnext = Bi × V B
20: for l = 1; l ≤ B; l = l + 1 do
21: if ‖V Bnext[l]‖2 < η[l] & d[l] + 2m−i < k ∗ 2m−1 then
22: V B[l] = V B[l];
23: end if
24: if ‖V Bnext[l]‖2 ≥ η[l] & d[l] + 2m−i < k ∗ 2m−1 then
25: V B[l] = V Bnext[l]; d[l] = d[l] + 2m−i

26: end if
27: if ‖V Bnext[l]‖2 ≥ η[l] & d[l] + 2m−i == k ∗ 2m−1 then
28: V B[l] = V Bnext[l]; d[l] = 0; move V B[l] to V D
29: end if
30: if ‖V Bnext[l]‖2 ≥ η[l] & d[l] + 2m−i > k ∗ 2m−1 then
31: move V B[l] to V C
32: end if
33: end for
34: end for
35: V B = Bm × V B
36: Make quantum jump for all vectors in V B
37: for l = 1; l ≤ B; l = l + 1 do
38: generate η[l] = U [0, 1]
39: d[l] = d[l] + 1
40: if d[l] == k ∗ 2m−1 then
41: d[l] = 0; move V B[l] to V D
42: else
43: move V B[l] to V A
44: end if
45: end for
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2.2. If the quantum jump condition is not fulfilled for V Bnext[l], and the
time has not reached the end of the interval [tH̃ , tH̃ + TH̃ ], then the
vector V B[l] is renewed, together with its current time d[l] (lines 24-26).

2.3. If the quantum jump condition is not fulfilled for V Bnext[l], but the
right boundary of the interval [tH̃ , tH̃ +TH̃ ] is reached, then the result is
saved, the vector is moved to block V D (lines 27-29). Propagation step
is finished.

2.4. In the quantum jump condition is not fulfilled for V Bnext[l], and the
current time has gone beyond the interval [tH̃ , tH̃ + TH̃ ], then the result
is not saved, and the vector is moved to block V C (lines 30-32).

On completion of the second part of the algorithm, block V B contains only
those vectors, for which quantum jump occurs only after propagation to the
time ∆tm.

3. In the third part of the algorithm (lines 35-45), vectors from block V B are
multiplied by matrix Bm, and undergo quantum jumps (lines 35-36). Then
for each vectors from block V B, there is a new value of η[l] is generated, the
current time d[l] is renewed, and the vector is moved to V A or V D (lines
37-45).

The backward step of the algorithm brings all vectors from V C to the right
end of the interval [tH̃ , tH̃ + TH̃ ]. It is implemented in the case, when the class
V A becomes empty after an iteration of the forward step. The backward step is
organized as follows (Algorithm 4).

1. Vectors from block V C are propagated to the right boundary of the time
interval [tH̃ , tH̃ + TH̃ ]. Block V C is multiplied by exponential operator ma-
trices Bi, i = m, .., 2, one by one (lines 1-11). Processing of the result of
the multiplication of each vector of the block by a matrix, V Cnext[l], is
determined by the following.

– In propagation over ∆ti is required to reach an exact boundary of the
time interval, [tH̃ , tH̃ + TH̃ ], then both the current time and vector are
renewed (lines 4-6).

– If after propagation over time ∆ti we reach the right end of the interval
[tH̃ , tH̃ + TH̃ ], then the current time and vector are renewed, the vector
is moved in block V D (lines 7-9).

2. All vectors from V D move to V A (line 12).

5 Numerical Results

5.1 Computational Infrastructure

We used a node of the Intel Endeavor cluster with 4 high-end 24-core Intel
Xeon E7-8890v4 CPUs (2.2 GHz, codename Broadwell). We employed the Intel
Math Kernel Library, Intel MPI, and Intel C++ Compiler from the Intel Parallel
Studio XE Cluster Edition 2017.
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Algorithm 4 : Backward step of the algorithm

1: for i = m; i ≥ 2 & C > 0; i = i− 1 do
2: V Cnext = Bi × V C
3: for l = 1; l ≤ C; l = l + 1 do
4: if d[l] & 2m−i = 1 /* & means bitwise AND here */ then
5: V C[l] = V Cnext[l]; d[l] = d[l] + 2m−i

6: end if
7: if d[l] == k ∗ 2m−1 then
8: d[l] = 0; move V C[l] to V D
9: end if

10: end for
11: end for
12: move all vectors from V D to V A

5.2 Methodology

The goal of the experiments and the model problem The main scientific
contribution of this paper is the algorithmic optimization of the quantum tra-
jectory method described in the previous section. In this section we empirically
show the advantages of the optimized algorithm compared to the baseline imple-
mentation. We also identify the most promising run modes by means of trying
different combinations of MPI processes, OpenMP threads, and MKL threads.
The quantum dimer with N = 1024 states described in section 2 is chosen as a
testbed problem. For this number of states the run time of the baseline algorithm
is acceptable and so we can run and analyze extensive performance tests. Be-
sides, this system size is big enough to highlight the advantage of the optimized
algorithm.

Correctness tests First, we check the correctness of the optimized implemen-
tation. Note that since in both cases we are dealing with stochastic algorithms,
the results will not be exactly the same. Given that the correctness of the base-
line implementation has been verified in our earlier work [6], we take its results as
a basis for further comparison. Correctness evaluation of the optimized version
consisted of two stages. At the first stage, we generated a sequence of pseudo-
random numbers and used it for both algorithms. Then we compared the result-
ing density matrices. For the time periods considered, the relative difference did
not exceed 10−14, which can be explained by the different order of floating-point
operations. At the second stage we used the time intervals and numbers of tra-
jectories sufficient to reach the attractor, which is of great interest for researchers
of this kind of problems. We found that the results of the optimized algorithm
were in the 95% confidence interval computed for the baseline version. Thus,
our experiments demonstrate that the results of the optimized code match the
expectations.

Performance evaluation A straightforward choice of the performance metric
is to compare the run time to reach the attractor with the given accuracy. How-
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ever, the problem considered is computationally intensive and testing many con-
figurations is somewhat wasteful in terms of CPU-hours consumed. Therefore, we
employ the number of trajectories processed per second, while propagating the
system for one time period, as the performance metric. Since our performance
evaluation experiments are done for a single period, the metric corresponds to
simply trajectories per second.

The plan for performance evaluation takes into account the following fea-
tures. The hotspot of the baseline implementation is the dense matrix-vector
multiplication routine. On the contrary, the optimized version spends most time
on dense matrix-matrix multiplication. Workload imbalance is under 5% even
for small numbers of trajectories.

The baseline implementation employs MPI + OpenMP parallelism on the
level of trajectories with sequential MKL matrix-vector multiplication. Parallel
matrix-vector multiplication is not beneficial because of a small workload per
invocation combined with good balancing on MPI + OpenMP level. The opti-
mized version uses the same MPI + OpenMP scheme, but we additionally study
efficiency of internal parallelism in MKL matrix-matrix multiplication.

Based on the above-mentioned considerations, we fixed the integration time
to be equal to one period and varied the number of processes P , the number
of threads T and, for the optimized version, the number of MKL threads M .
For both versions the total number of threads in each configuration was equal
to the number of cores (96). Previously we have checked that using all 96 cores
indeed yields better performance (in terms of the metric used) compared to
smaller numbers of cores. All experiments were performed on a single node of
the Endeavor system, since the scaling efficiency on distributed memory is close
to linear due to a small workload imbalance and virtually absent communications
between nodes.

5.3 Results and Discussion

First, we found the empirically best combination of processes and threads for the
baseline version (Table 2). The value of the performance metric varies between
0.8 and 1.69 trajectories per second, with the optimal configuration being 4
processes with 24 threads per process. In this mode each process is run on a
separate 24-core CPU with an affinity mask used to pin OpenMP threads to
cores.

The next series of experiments concerns the optimized version with varying
numbers of MPI processes, OpenMP threads and MKL threads. The results
are presented at Table 3. Same as for the baseline version, the configurations
with external parallelism and sequential MKL routines are superior. The best
configuration is again 4 processes with 24 threads per process, scoring 29.09
trajectories per second. In this configuration the optimized version outperforms
the baseline version by a factor of 17.21, which proves efficacy of the proposed
approach to optimization. Increasing the problem size will likely further increase
the speedup due to the growing advantage of matrix-matrix multiplication over
a set of matrix-vector multiplications.
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Table 2. Comparison of MPI + OpenMP configurations for the baseline version.

# processes # threads trajectories per second

1 96 0.80
2 48 0.63
4 24 1.69
8 12 1.49
12 8 1.44
24 4 1.39
48 2 1.36
96 1 1.35

Table 3. Comparison of MPI, OpenMP and MKL configurations for the optimized
version.

# processes
# OpenMP

threads
# MKL
threads

trajectories
per second

1 1 96 5.57
1 96 1 27.60
2 1 48 11.69
2 48 1 28.07
4 1 24 21.58
4 24 1 29.09
8 1 12 16.32
8 12 1 25.75
12 1 8 27.03
12 8 1 21.02
24 1 4 27.33
24 4 1 18.48
48 1 2 13.99
48 2 1 16.87
96 1 1 13.78

To assess the hardware usage efficiency we apply the Roofline model [11].
Presented several years ago, this method of analysis is widely used to compare
the achieved and theoretically attainable performance on specific computing sys-
tems. The main advantage of this model is a visual representation of the achieved
performance and its theoretical upper bounds. In our experiments we collected
the data traffic through L1 cache and arithmetic intensity (AI) using the Roofline
Analysis of Intel Advisor. The baseline and optimized implementations were run
using the best combination of MPI processes and OpenMP threads. The resulted
Roofline model is presented below as a log-log plot (Fig. 1). The arithmetic in-
tensity, computed as the number of floating point operations related to the data
traffic through L1 cache, is shown on the horizontal axis. The vertical axis cor-
responds to the achieved and attainable floating-point performance in double
precision. Four dotted sloping lines show the peak performance as a function of
arithmetic intensity with fixed memory bandwidth of L1, L2, L3, and DRAM.
Three horizontal dotted lines show peak performance for double precision float-
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Fig. 1. Roofline model for the baseline and optimized algorithms

ing point computations in the scalar, vector and vector fused multiply-add (vec-
tor FMA) modes, respectively. The collected performance data is presented as
follows. The red triangle represents the overall baseline version performance
184.69 GFLOPS with AI = 0.239 FLOP/Byte. The green triangle represents
the overall optimized version performance 2211.92 GFLOPS with AI = 0.37
FLOP/Byte. The red and green circles correspond to the main hotspots of both
implementations. Thus, the largest red circle corresponds to the MKL dense ma-
trix multiplication routine. It achieved 3128.504 GFLOPS that is very close to
the peak hardware performance. Overall, the optimized version achieved 68% of
the 4-socket 96-core Intel Broadwell CPU peak performance which is quite well
for state-of-the-art scientific applications.

6 Conclusions

We proposed and validated the optimized version of the quantum trajectory
method, which allows to find asymptotic states of open quantum systems. The
central idea is the clustering (grouping) of trajectories into matrices and substi-
tution of multiple matrix-vector multiplication operations with a single matrix-
matrix multiplication. This modification significantly increases efficiency of the
multi-level hierarchic memory usage due to the potential of re-using the data,
previously loaded in the different level cache memory. The original algorithm
[6] did not allow for an automatic merging of trajectories due to the different
times of quantum jumps on every trajectory. It required a substantial rewrit-
ing of the code, which proved to be completely justified. Computational results
showed more than 17-fold acceleration with the testbed quantum model of the
dimension N = 1024, which demonstrated a possibility of substantial economy of
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computational resources or/and time of calculations. The obtained results open
the door to studying systems of even greater dimension. We expect our approach
to be applicable to many models, actual and timely in different fields of modern
quantum physics.
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